Skip to main content

Particle in Harmonic E-Field E(t) = Esinω 0 t; Schwinger–Fock Proper-Time Method

  • Chapter
Classical and Quantum Dynamics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2680 Accesses

Abstract

Since the Green’s function of a Dirac particle in an external field, which is described by a potential A μ(x), is given by

$$\displaystyle{ \left [\gamma \cdot \left (\frac{1} {i} \partial - eA\right ) + m\right ]G(x,x^{{\prime}}\vert A) =\delta (x - x^{{\prime}}) }$$
(37.1)

the Green operator G +[A] is defined by

$$\displaystyle{ \left (\gamma \Pi + m\right )G_{+} = 1\,,\quad \Pi _{\mu } = p_{\mu } - eA_{\mu } }$$

or

$$\displaystyle\begin{array}{rcl} G_{+}& =& \frac{1} {\gamma \Pi + m - i\epsilon }\,,\quad \epsilon > 0 {}\\ & =& \frac{\gamma \Pi - m} {\left (\gamma \Pi \right )^{2} - m^{2} + i\epsilon } = \frac{-\gamma \Pi + m} {m^{2} -\left (\gamma \Pi \right )^{2} - i\epsilon } {}\\ & =& \left (-\gamma \Pi + m\right )i\int _{0}^{\infty }ds\exp \left [-is\left (m^{2} -\left (\gamma \Pi \right )^{2}\right ) -\epsilon s\right ]_{\epsilon \rightarrow 0}\quad. {}\\ \end{array}$$

This expression is needed in

$$\displaystyle{ i\frac{\delta W^{(1)}[A]} {\delta A_{\mu }(x)} = e\mathop{\mathrm{tr}}\nolimits _{\gamma }\left [\gamma ^{\mu }G_{+}\left (x,x\vert A\right )\right ]. }$$
(37.2)

One can show that the ansatz

$$\displaystyle{ iW^{(1)} = i\int (dx)\mathcal{L}^{(1)} = -\frac{1} {2}\int _{0}^{\infty }\frac{ds} {s} e^{-ism^{2} }\mathop{ \mathrm{Tr}}\nolimits \left [e^{is\left (\gamma \Pi \right )^{2} }\right ] }$$
(37.3)

fulfills equation (37.2). One can therefore write the unrenormalized Lagrangian

$$\displaystyle{ \mathcal{L}^{(1)} = \frac{i} {2}\mathop{\mathrm{tr}}\nolimits \int _{0}^{\infty }\frac{ds} {s} e^{-ism^{2} }\langle x\vert e^{is\left (\gamma \Pi \right )^{2} }\vert x\rangle + \text{const.} }$$
(37.4)

Let us write (37.3) in the form

$$\displaystyle\begin{array}{rcl} iW^{(1)}[A] = -\frac{1} {2}\int _{0}^{\infty }\frac{ds} {s} e^{-ism^{2} }\mathop{ \mathrm{Tr}}\nolimits \left \{\left [U(s) - U_{0}(s)\right ] + ct\right \}& &{}\end{array}$$
(37.5)

where

$$\displaystyle\begin{array}{rcl} U_{0}(s)& =& e^{is\partial ^{2} } {}\\ U(s)& =& e^{is\left (\gamma \Pi \right )^{2} } = e^{is\left (-\Pi ^{2}+\frac{e} {2} \sigma _{\mu \nu }F^{\mu \nu }\right ) } {}\\ V (s)& =& U_{0}^{-1}(s)U(s) = U_{ 0}(-s)U(s) = e^{-is\partial ^{2} }e^{is\left (-\Pi ^{2}+\frac{e} {2} \sigma _{\mu \nu }F^{\mu \nu }\right ) }. {}\\ \end{array}$$

V (s) satisfies the differential equation

$$\displaystyle\begin{array}{rcl} -i \frac{\partial } {\partial s}V (s)& =& e^{-is\partial ^{2} }\left [-\Pi ^{2} - \partial ^{2} + \frac{e} {2}\sigma F\right ]e^{is\partial ^{2} }V (s) {}\\ & =& e^{-is\partial ^{2} }\left [-\left [-\partial ^{2} - e\left (\frac{1} {i} \partial A + A\frac{1} {i} \partial \right ) + e^{2}A^{2}\right ] - \partial ^{2} + \frac{e} {2}\sigma F\right ]e^{is\partial ^{2} }V (s) {}\\ & =& e^{-is\partial ^{2} }\left [\partial ^{2} + e\left (\frac{1} {i} \partial A + A\frac{1} {i} \partial \right ) - e^{2}A^{2} - \partial ^{2} + \frac{e} {2}\sigma F\right ]e^{is\partial ^{2} }V (s) {}\\ & =& e^{-is\partial ^{2} }Qe^{is\partial ^{2} }V (s) = U_{0}^{-1}(s)QU_{ 0}(s)V (s) = U_{0}^{-1}(s)QU(s) {}\\ & & {}\\ \end{array}$$

where

$$\displaystyle\begin{array}{rcl} Q&:=& -e^{2}A^{2} + e\left (pA + Ap\right ) + \frac{e} {2}\sigma F\quad. {}\\ \end{array}$$

The corresponding integral equation, incorporating the boundary condition V (0) = 1, is

$$\displaystyle\begin{array}{rcl} V (s)& =& 1 + i\int _{0}^{s}ds^{{\prime}}U_{ 0}^{-1}(s^{{\prime}})QU_{ 0}(s^{{\prime}})V (s^{{\prime}}),\quad U = U_{ 0}V {}\\ U(s)& =& U_{0}(s) + iU_{0}(s)\int _{0}^{s}ds^{{\prime}}U_{ 0}^{-1}(s^{{\prime}})QU(s^{{\prime}})\quad. {}\\ & & {}\\ \end{array}$$

Iterating

$$\displaystyle\begin{array}{rcl} U(s)& =& U_{0}(s) + iU_{0}(s)\int _{0}^{s}ds^{{\prime}}U_{ 0}^{-1}(s^{{\prime}})QU_{ 0}(s^{{\prime}}) {}\\ & +& i^{2}U_{ 0}(s)\int _{0}^{s}ds^{{\prime}}U_{ 0}^{-1}(s^{{\prime}})Q\int _{ 0}^{s^{{\prime}} }ds^{{\prime\prime}}U_{ 0}(s^{{\prime}})U_{ 0}^{-1}(s^{{\prime\prime}})QU_{ 0}(s^{{\prime\prime}}) +\ldots. {}\\ \end{array}$$

Using U 0(s 1)U 0(s 2) = U 0(s 1 + s 2) and U 0(−s) = U 0 −1(s) we obtain

$$\displaystyle\begin{array}{rcl} & & \mathop{\mathrm{Tr}}\nolimits \left [U(s)\right ] =\mathop{ \mathrm{Tr}}\nolimits \left [U_{0}(s)\right ] + is\mathop{\mathrm{Tr}}\nolimits \left [U_{0}(s)Q\right ] {}\\ & & \phantom{\mathop{\mathrm{Tr}}\nolimits \left [U(s)\right ] =\mathop{ \mathrm{Tr}}\nolimits }+i^{2}\int _{ 0}^{s}ds_{ 1}\int _{0}^{s_{1} }ds_{2}\mathop{ \mathrm{Tr}}\nolimits \left [U_{0}(s + s_{2} - s_{1})QU_{0}(s_{1} - s_{2})Q\right ] +\ldots. {}\\ \end{array}$$

The contribution of \(\mathop{\mathrm{Tr}}\nolimits \left [U_{0}(s)\right ] =\mathop{ \mathrm{Tr}}\nolimits e^{is\partial ^{2} }\) is independent of A μ and hence to be dropped as the unwanted additive constant in (37.5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dittrich, W., Reuter, M. (2016). Particle in Harmonic E-Field E(t) = Esinω 0 t; Schwinger–Fock Proper-Time Method. In: Classical and Quantum Dynamics. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-21677-5_37

Download citation

Publish with us

Policies and ethics