Skip to main content

Design of Self-generating Component Powered by Magnetic Energy Harvesting—Magnetic Field Alarm

  • Chapter
  • First Online:

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 16))

Abstract

A design of self-generating component powered by magnetic energy harvesting is presented. In order to demonstrate the devices, a magnetic field alarm is developed. It consists of an energy harvesting module, Cockcroft-Walton circuit and piezo buzzer. The energy harvesting module is composed of coil and magnetic flux concentration core. It can generate 200 µW from an environmental magnetic field of 200 µT at 60 Hz. The Cockcroft-Walton circuit can converts the AC voltage to a suitable DC voltage for the piezo buzzer. This alarm can notice not only the magnetic field level defined by ICNIRP2010 but also the existence of magnetic field energy to be harvested. For the further developments, theoretical estimations for harvesting energy, effective permeability and optimum load condition are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K. Tashiro, H. Wakiwaka, S. Inoue, Y. Uchiyama, Energy Harvesting of Magnetic Power-Line Noise. IEEE Trans. Magn. 47, 4441–4444 (2011)

    Article  Google Scholar 

  2. S. Takahashi, N. Yoshida, K. Maruhashi M. Fukaishi, Real-time current-waveform sensor with plugless energy harvesting from AC power lines for home/building energy-management systems, in 2011 IEEE International Solid-State Circuits Conference (2011), pp. 220–222

    Google Scholar 

  3. N.M. Roscoe, M.D. Judd, Harvesting enegy from magnetic fields to power condition monitoring sensors. IEEE Sens. J. 13, 2263–2270 (2013)

    Article  Google Scholar 

  4. R.J.M. Vuller, R. van Schaijk, I. Doms, C. Van Hoof, R. Merten, Micropower energy harvesting. Solid State Electron. 53, 684–693 (2009)

    Article  Google Scholar 

  5. A. Harb, Energy harvesting: state-of-the-art. Renewable Energy 36, 2641–2654 (2011)

    Article  Google Scholar 

  6. R.J. Vyas, B.B. Cook, Y. Kawahara, M.M. Tenzeris, E-WEHP: a batteryless embedded sensor-platform wirelessly powered from ambient Digital-TV signals. IEEE Trans. Microw. Theory Tech. 41, 2491–2505 (2013)

    Article  Google Scholar 

  7. K. Tashiro, H. Wakiwaka, Y. Uchiyama G. Hattori, Design of AC–DC Converter for Magnetic Energy Harvesting Device. Sensing technology: current status and future trends I, smart sensors, measurement and instrumentation, vol. 7 (Springer, Dordrecht, 2014), pp. 297–308

    Google Scholar 

  8. K. Tashiro, H. Wakiwaka, Y. Uchiyama, Loss measurement in power conditioning module for power-line magnetic noise energy harvesting device. J. Japan Soc. Appl. Electromagnet. Mechan. 20, 440–445 (2012)

    Google Scholar 

  9. K. Tashiro, H. Wakiwaka, Y. Uchiyama, Consideration of energy strage circuits for magnetic energy harvesting. J. Japan Soc. Appl. Electromagnet. Mech. 21, 308–313 (2013)

    Article  Google Scholar 

  10. K. Tashiro, H. Wakiwaka, S. Shimada, Demonstration of magnetic energy harvesting from electrical appliances. J. Energy Power Eng. 8, 568–572 (2014)

    Google Scholar 

  11. K. Tashiro, G. Hattori, H. Wakiwaka, Magnetic flux concentration methods for magnetic energy harvesting module. EPJ Web Conf. 40, 06011 (2013)

    Article  Google Scholar 

  12. K. Tashiro, H. Wakiwaka, Y. Uchiyama, Theoretical design of energy harvesting module or wireless power transmission receiver using magnetic field of 0.2 mT at 60 Hz. J. Energy Power Eng. 7, 740–745 (2013)

    Google Scholar 

  13. ICNIRP : Guideline for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz), Health Phys. 99(6), 818–836 (2010)

    Google Scholar 

  14. K. Tashiro, A. Matsuoka, H. Wakiwaka, Simple-Box-9 coil system: a novel approach to design of a square coil system for producing uniform magnetic fields. Mater. Sci. Forum 670, 275–283 (2011)

    Article  Google Scholar 

  15. F.W. Grover, Inductance Calculations, Dover Phoenix Editions (2004), pp. 94–113

    Google Scholar 

  16. J.A. Osborn, Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351–357 (1945)

    Article  Google Scholar 

  17. C. Coillot, J. Moutoussamy, P. Leroy, G. Chanteur, A. Roux, Improvements on the design of search coil magnetometer for space experiments. Sensor Letters 5, 167–170 (2007)

    Article  Google Scholar 

  18. E. Paperno, A. Grosz, A miniature and ultralow power search coil optimized for a 20 mHz to 2 kHz frequency range. J. Appl. Phys. 105, 07E708 (2009)

    Article  Google Scholar 

  19. D.-X. Chen, E. Pardo, A. Sanchez, Fluxmetric and magnetometric demagnetizing factors for cylinders. J. Magn. Magn. Mater. 306, 135–146 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by JSPS KAKENHI, Scientific Research (C), Grant Number 25502001, 2013–2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tashiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tashiro, K., Ikegami, A., Shimada, S., Kojima, H., Wakiwaka, H. (2016). Design of Self-generating Component Powered by Magnetic Energy Harvesting—Magnetic Field Alarm. In: Mukhopadhyay, S. (eds) Next Generation Sensors and Systems. Smart Sensors, Measurement and Instrumentation, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-21671-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21671-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21670-6

  • Online ISBN: 978-3-319-21671-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics