Skip to main content

Graphene Based Physical and Chemical Sensors

  • Chapter
  • First Online:
Next Generation Sensors and Systems

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 16))

  • 2644 Accesses

Abstract

New nanostructured Schottky junctions based on graphene/platinum grown on different substrates are fabricated and investigated for sensing applications. The integration of graphene layer (s) on regular M-S junctions was only possible by using an ALD-grown platinum thin film (~40 nm) and then growing graphene in PECVD at temperatures lower than platinum silicide formation temperature (i.e., <700 °C). The electrochemical and radiation sensing behaviors were investigated using two different substrate types. The first is a moderately-doped n-type (e conc. ≈ 2 × 1015 cm−3) silicon substrate in which a Schottky rectifier response with different threshold voltages was observed. An order of magnitude increase in generated current was observed with the use of high-resistivity silicon substrates (ρ ≥ 10,000 Ωcm). By adding a dielectric layer to form a graphene-metal-insulator-semiconductor junction (Graphene–MIS) a linear ohmic response was observed. The obtained responses were explained by studying the band diagrams for the different processes with the aid of XPS and Raman analyses that clearly indicated the p-doping of the graphene layer in response to γ-ray radiations, which resulted in a strong reversed current tunneled through the ultrathin platinum layer. In the case of high-resistivity silicon substrates, the reversed current is much stronger due to the weak forward current from the substrate, which resulted in a stronger reverse response and, ultimately, higher sensitivity. The uniqueness of the research is based on the process for growing the graphene layer on the M-S junction. Exfoliated graphene results in increased contact resistance and low e− mobility, which will not yield the desired effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.F. Creemer, S. Helveg, P.J. Kooyman, A.M. Molenbroek, H.W. Zandbergen, P.M. Sarro, A MEMS Reactor For Atomic-Scale Microscopy Of Nanomaterials Under Industrially Relevant Conditions. J. Microelectromech. Syst. 16(2), 254–264 (2010)

    Article  Google Scholar 

  2. X. Zang, Q. Zhou, J. Chang, Y. Liu, L. Lin, Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectron. Eng. 132, 192–206 (2015)

    Article  Google Scholar 

  3. L.F. Velasquez-Garcia, B.L.P. Gassend, A.I. Akinwande, CNT-Based MEMS/NEMS gas ionizers for portable mass spectrometry applications. J. Microelectromech. Syst. 16(3), 484–493 (2010)

    Article  Google Scholar 

  4. Z. Hou, J. Wu, W. Zhou, X. Wei, D. Xu, Y. Zhang, B. Cai, A MEMS-based ionization gas sensor using carbon nanotubes. IEEE Trans. Electron. Devices 54(6), 1545–1548 (2007)

    Article  Google Scholar 

  5. H. Chen, N. Xi, B. Song, L. Chen, J. Zhao, K.W.C. Lai, R. Yang, Infrared camera using a single nano-photodetector. IEEE Sens. J. 13(3), 949–958 (2013)

    Article  Google Scholar 

  6. M. Lapisa, G. Stemme, F. Niklaus, Skolan för elektro- och systemteknik (EES), KTH & Mikrosystemteknik (Bytt namn 20121201), “Wafer-level heterogeneous integration for MOEMS, MEMS, and NEMS”. IEEE J. Sel. Top. Quantum Electron. 3(3), 629–644 (2011)

    Article  Google Scholar 

  7. J. Han, P. Cheng, H. Wang, C. Zhang, J. Zhang, Y. Wang, L. Duan, G. Ding, MEMS-based Pt film temperature sensor on an alumina substrate. Mater. Lett. 125, 224–226 (2014)

    Article  Google Scholar 

  8. C. Hierold, A. Jungen, C. Stampfer, T. Helbling, Nano electromechanical sensors based on carbon nanotubes. Sens. Actuators, A 136(1), 51–61 (2007)

    Article  Google Scholar 

  9. J. Pekarek, R. Vrba, J. Prasek, O. Jasek, P. Majzlikova, J. Pekarkova, L. Zajickova, MEMS carbon nanotubes field emission pressure sensor with simplified design: performance and field emission properties study. IEEE Sens. J. 15(3), 1430–1436 (2015)

    Article  Google Scholar 

  10. S. Wang, C. Hsiao, S. Chang, K. Lam, K. Wen, S. Young, S. Hung, B. Huang, CuO nanowire-based humidity sensor. IEEE Sens. J. 12(6), 1884–1888 (2012)

    Article  Google Scholar 

  11. E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Ponzoni, D. Zappa, G. Sberveglieri, Metal oxide nanowire chemical and biochemical sensors. J. Mater. Res. 28(21), 2911 (2013)

    Article  Google Scholar 

  12. S. Xi, T. Shi, D. Liu, L. Xu, H. Long, W. Lai, Z. Tang, Integration of carbon nanotubes to three-dimensional C-MEMS for glucose sensors. Sens. Actuators, A 198, 15 (2013)

    Article  Google Scholar 

  13. R. MacKenzie, C. Fraschina, T. Sannomiya, V. Auzelyte, J. Vörös, Optical sensing with simultaneous electrochemical control in metal nanowire arrays. Sens. (Basel, Switz.) 10(11), 9808–9830 (2010)

    Google Scholar 

  14. S.J. Patil, A. Zajac, T. Zhukov, S. Bhansali, Ultrasensitive electrochemical detection of cytokeratin-7, using Au nanowires based biosensor. Sens. Actuators: B. Chem. 129(2), 859–865 (2008)

    Article  Google Scholar 

  15. L. Wang, H. Dou, Z. Lou, T. Zhang, Encapsuled nanoreactors (Au@SnO2): a new sensing material for chemical sensors. Nanoscale 5(7), 2686 (2013)

    Article  Google Scholar 

  16. A. Lajn, H.v. Wenckstern, Z. Zhang, C. Czekalla, G. Biehne, J. Lenzner, H. Hochmuth, M. Lorenz, M. Grundmann, S. Wickert, C. Vogt, R. Denecke, Proper- ties of reactively sputtered Ag, Au, Pd, and Pt Schottky contacts on n-type ZnO. J. Vac. Sci. Technol. B 27, 1769–1773 (2009)

    Google Scholar 

  17. I. Weber, Influence of noble metals on the structural and catalytic properties of Ce-doped SnO2 systems. Sens. Actuators B: Chem. 97(1), 31–38 (2004)

    Article  Google Scholar 

  18. L. Wang, Z. Lou, R. Wang, T. Fei, T. Zhang, Ring-like PdO-decorated NiO with lamellar structures and their application in gas sensor. Sens. Actuators B: Chem. 171–172, 1180–1185 (2012)

    Article  Google Scholar 

  19. A. Rani, A.S. Zoolfakar, J.Z. Ou, R. Ab Kadir, H. Nili, K. Latham, S. Sriram, M. Bhaskaran, S. Zhuiykov, R.B. Kaner, K. Kalantar-zadeh, Reduced impurity-driven defect states in anodized nanoporous Nb2O5: the possibility of improving per- formance of photoanodes. Chem. Commun. 49, 6349–6351 (2013)

    Google Scholar 

  20. G. Ramírez, S.E. Rodil, S. Muhl, D. Turcio-Ortega, J.J. Olaya, M. Rivera, E. Camps, L. Escobar-Alarcón, Amorphous niobium oxide thin films. J. Non-Cryst. Solids 356(50), 2714–2721 (2010)

    Article  Google Scholar 

  21. M. Lopez-Garcia, Y.-L.D. Ho, M.P.C. Taverne, L.-F. Chen, M.M. Murshidy, A.P.Edwards, M.Y. Serry, A.M. Adawi, J.G. Rarity, R. Oulton, Efficient out-coupling and beaming of Tamm optical states via surface plasmon polariton excitation. Appl Phys Lett 104(23), 231116 (2014)

    Google Scholar 

  22. X. Fang, L. Hu, K. Huo, B. Gao, L. Zhao, M. Liao, P.K. Chu, Y. Bando, D. Golberg, New ultraviolet photodetector based on individual Nb2O5 nanobelts. Adv. Funct. Mater. 21, 3907–3915 (2011)

    Article  Google Scholar 

  23. J.Z. Ou, R.A. Rani, M.-H. Ham, M.R. Field, Y. Zhang, H. Zheng, P. Reece, S. Zhuiykov, S. Sriram, M. Bhaskaran, R.B. Kaner, K. Kalantar-zadeh, Elevated temperature anodized Nb2 O5: a photoanode material with exceptionally large photocon- version efficiencies. ACS Nano 6, 4045–4053 (2012)

    Article  Google Scholar 

  24. A. Reina, X.T. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large-scale arrays of single layer graphene resonators. Nano Lett. 9(8), 3087 (2009)

    Article  Google Scholar 

  25. K. Keun Soo, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)

    Google Scholar 

  26. X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, I, e. tutuc, sk banerjee, l colombo, rs ruoff. Science 324(1312), 14 (2009)

    Google Scholar 

  27. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 3(9), 538–542 (2008)

    Article  Google Scholar 

  28. Y. Hernandez, V. Nicolosi, M. Lotya, F. Blighe, Z. Sun, De Sukanta, I.T. McGovern et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)

    Article  Google Scholar 

  29. A. Sharaf, A. Gamal, M. Serry, New nanostructured Schottky diode gamma-ray radiation sensor. Procedia Eng. 87, 1184–1189 (2014)

    Article  Google Scholar 

  30. M. Serry, A. Gamal, M. Shaban, A. Sharaf, High sensitivity optochemical andelectrochemical metal ion sensor, Micro & Nano Lett 8(11), 775–778 (2013)

    Google Scholar 

  31. M. Serry, A. Sharaf, A. Emira, A. Abdul-Wahed, A. Gamal, Nanostructured graphene–Schottky junction low-bias radiation sensors. Sens. Actuators A: Phys. (2015). 10.1016/j.sna.2015.04.031

  32. A. Sharaf, A. Gamal, M. Serry, High performance NEMS ultrahigh sensitive radiation sensor based on platinum nanorods capacitor, IEEE Sensors 2013, Baltimore, USA, 3–6 Nov 2013

    Google Scholar 

  33. C. Malitesta, F. Palmisano, L. Torsi, P.G. Zambonin, Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film. Anal. Chem. 62(24), 2735 (1990)

    Article  Google Scholar 

  34. B.J. White, H. James Harmon, Novel optical solid-state glucose sensor using immobilized glucose oxidase. Biochem. Biophys. Res. Commun. 296(5), 1069–1071 (2002)

    Google Scholar 

  35. S. Park, T.D. Chung, S.K. Kang, R. Jeong, H. Boo, H.C. Kim, Glucose sensor based on glucose oxidase immobilized by zirconium phosphate. Anal. Sci.: Int. J. Jpn. Soc. Anal. Chem. 20(12), 1635 (2004)

    Article  Google Scholar 

  36. M. Mathew, N. Sandhyarani, A highly sensitive electrochemical glucose sensor structuring with nickel hydroxide and enzyme glucose oxidase. Electrochim. Acta 108, 274–280 (2013)

    Article  Google Scholar 

  37. S.M. Sze, K.K. Ng, Physics of Semiconductor Device (Wiley, New York, 2006)

    Book  Google Scholar 

  38. M. Shaban, A.G.A. Hady, M. Serry, A New Sensor for Heavy Metals Detection in Aqueous Media, IEEE Sensors J 14(2), 436–441 (2014). 10.1109/JSEN.2013.2279916

    Google Scholar 

  39. V. Yu, E. Whiteway, J. Maassen, M. Hilke, Raman spectroscopy of the internal strain of a graphene layer grown on copper tuned by chemical vapor deposition. Phys. Rev. B 84(20), 205407 (2011)

    Article  Google Scholar 

  40. UC Davis Organic Chem, http://chemwiki.ucdavis.edu/Organic_Chemistry/Organic_Chemistry_With_a_Biological_Emphasis/Chapter_03%3A_Conformations_and_Stereochemistry/Section_3.2%3A_Conformations_of_cyclic_organic_molecules. Accessed 31 Jan 2015

  41. CSBSJU.edu, http://employees.csbsju.edu/cschaller/Principles%20Chem/conformation/conf%20otherB.htm. Accessed 1 Feb 2015

  42. R.U. Lemieux, P. Chu, Conformations and Relative Stabilities of Acetylated Sugars as Determined by Nuclear Magnetic Resonance Spectroscopy and Anomerization Equilibria. Abstracts of Papers, (133rd National Meeting of the American Chemical Society, San Francisco, CA, American Chemical Society: Washington, DC, 1958, 31N)

    Google Scholar 

  43. F. Schmidt, O. Sczesny, C. Ruppei, V. Magori, Wireless interrogator system for SAW-identification marks and SAW-sensor components, in IEEE International Frequency Control Symposium, Honolulu, 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Serry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Serry, M. (2016). Graphene Based Physical and Chemical Sensors. In: Mukhopadhyay, S. (eds) Next Generation Sensors and Systems. Smart Sensors, Measurement and Instrumentation, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-21671-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21671-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21670-6

  • Online ISBN: 978-3-319-21671-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics