Skip to main content

Noninvasive Continuous Positive Airway Pressure Response in Bronchiectasis Exacerbations: Key Practical Aspects and Topics

  • Chapter
  • 3364 Accesses

Abstract

Bronchiectasis is a progressive lung disease characterized by gradual airflow obstruction secondary to mucus plugging, excessive airway inflammation, and parenchymal destruction. Continuous positive airway pressure (CPAP) has been shown to promote recruitment of the flooded alveoli, decrease the ventilation-perfusion mismatch, and relieve dyspnea in patients with bronchiectasis exacerbations. It has also been proven to improve respiratory mechanics and reduce the work of breathing. It can be also successfully adopted in promoting mucus clearance and preventing desaturation during chest physiotherapy and exercise. However, validated criteria for starting CPAP treatment in bronchiectasis are lacking and should be assessed in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CF:

Cystic fibrosis

CPAP:

Continuous positive airway pressure

COPD:

Chronic obstructive pulmonary disease

FEV1 :

Forced expiratory volume in one second

FRC:

Functional residual capacity

FVC:

Forced vital capacity

FiO2 :

Fraction of inspired oxygen

HFNC:

High-flow nasal cannula oxygen

NIV:

Noninvasive ventilation

NPPV:

Noninvasive positive pressure ventilation

PaCO2 :

Partial pressure of carbon dioxide

PaO2 :

Partial pressure of oxygen

PEEPi:

Intrinsic positive end-expiratory pressure

PEP:

Positive expiratory pressure

Pdi:

Transdiaphragmatic pressure

Pes:

Esophageal pressure

PTPes/b:

Pressure time product of the esophageal pressure per breath

PTPes/min:

Pressure time product of the esophageal pressure per minute

RV:

Residual volume

TPEP:

Temporary positive expiratory pressure

VO2 :

Oxygen consumption

WOB:

Work of breathing

References

  1. Hill AT, Pasteur M, Cornford C, et al. Primary care summary of the British Thoracic Society guideline on the management of non-cystic fibrosis bronchiectasis. Prim Care Respir J. 2011;20(2):135–40.

    Article  PubMed  Google Scholar 

  2. Weycker D, Edelsberg J, Oster G, et al. Prevalence and economic burden of bronchiectasis. Clin Pulm Med. 2005;4:205–9.

    Article  Google Scholar 

  3. Patel IS, Vlahos I, Wilkinson TM, et al. Bronchiectasis, exacerbation indices, and inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2004;170:400–7.

    Article  PubMed  Google Scholar 

  4. King P. Pathogenesis of bronchiectasis. Paediatr Respir Rev. 2011;12(2):104–10.

    Article  PubMed  Google Scholar 

  5. Kelly MG, Murphy S, Elborn JS. Bronchiectasis in secondary care: a comprehensive profile of a neglected disease. Eur J Intern Med. 2003;14:488–92.

    Article  PubMed  Google Scholar 

  6. Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med. 2003;168:918–31.

    Article  PubMed  Google Scholar 

  7. Sood N, Paradowski LJ, Yankaskas JR. Outcomes of intensive care unit care in adults with cystic fibrosis. [see Comment]. Am J Respir Crit Care Med. 2001;163:335–8.

    Article  CAS  PubMed  Google Scholar 

  8. Pang J, Chan HS, Sung JY. Prevalence of asthma, atopy and bronchial hyperactivity in bronchiectasis: a controlled study. Thorax. 1989;44:948–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Sheehan RE, Wells AU, Copley SJ, et al. A comparison of serial computed tomography and functional change in bronchiectasis. Eur Respir J. 2002;20:581–7.

    Article  CAS  PubMed  Google Scholar 

  10. King P, Holdsworth S, Freezer N. Bronchiectasis. Intern Med J. 2006;36(11):729–37.

    Article  CAS  PubMed  Google Scholar 

  11. Barker AF. Bronchiectasis. N Engl J Med. 2002;346:1383–93.

    Article  PubMed  Google Scholar 

  12. Sprague K, Graff G, Tobias JD. Noninvasive ventilation in respiratory failure due to cystic fibrosis. South Med J. 2000;93:953–61.

    Article  Google Scholar 

  13. Tepper RS, Skatrud JB, Dempsey JA. Ventilation and oxygenation changes during sleep in cystic fibrosis. Chest. 1983;84:388–93.

    Article  CAS  PubMed  Google Scholar 

  14. Muller NL, Francis PW, Gurwitz D, et al. Mechanism of hemoglobin desaturation during rapid-eye-movement sleep in normal subjects and in patients with cystic fibrosis. Am Rev Respir Dis. 1980;121:463–9.

    Article  CAS  PubMed  Google Scholar 

  15. Murray MP, Turnbull K, MacQuarrie S, et al. Assessing response to treatment of exacerbations of bronchiectasis in adults. Eur Respir J. 2009;33:312–7.

    Article  CAS  PubMed  Google Scholar 

  16. Linder KH, Lotz P, Ahnefeld FW. Continuous positive airway pressure effect on functional residual capacity, vital capacity and its subdivisions. Chest. 1987;92:66–70.

    Article  Google Scholar 

  17. Placidi G, Cornacchia M, Polese G, et al. Chest physiotherapy with positive airway pressure: a pilot study of short-term effects on sputum clearance in patients with cystic fibrosis and severe airway obstruction. Respir Care. 2006;51(10):1145–53.

    PubMed  Google Scholar 

  18. Holland AE, Denehy L, Ntoumenopoulos G, et al. Non-invasive ventilation assist chest physiotherapy in adults with acute exacerbations of cystic fibrosis. Thorax. 2003;58:880–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Regnis JA, Donnelly PM, Robinson M, et al. Ventilatory mechanics at rest and during exercise in patients with cystic fibrosis. Am J Respir Crit Care Med. 1996;154(5):1418–25.

    Article  CAS  PubMed  Google Scholar 

  20. Coussa ML, Guerin C, Eissa NT, et al. Partitioning of work of breathing in mechanically ventilated COPD patients. J Appl Physiol (1985). 1993;75:711–1719.

    Google Scholar 

  21. Goldberg P, Reissmann H, Maltais F, et al. Efficacy of noninvasive CPAP in COPD with acute respiratory failure. Eur Respir J. 1995;8:1894–900.

    Article  CAS  PubMed  Google Scholar 

  22. Appendini L, Patessio A, Zanaboni S, et al. Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994;149:1069–76.

    Article  CAS  PubMed  Google Scholar 

  23. Katz JA, Marks JD. Inspiratory work with and without continuous airway pressure in patients with acute respiratory failure. Anesthesiology. 1985;63:598–607.

    Article  CAS  PubMed  Google Scholar 

  24. Roca O, Riera J, Torres F, et al. High-flow oxygen therapy in acute respiratory failure. Respir Care. 2010;55:408–13.

    PubMed  Google Scholar 

  25. Parke RL, McGuinness SP, Eccleston ML. A preliminary randomized controlled trial to assess effectiveness of nasal high-flow oxygen in intensive care patients. Respir Care. 2011;56:265–70.

    Article  PubMed  Google Scholar 

  26. Groves N, Tobin A. High flow nasal oxygen generates positive airway pressure in adult volunteers. Aust Crit Care. 2007;20:126–31.

    Article  PubMed  Google Scholar 

  27. Parke RL, McGuinness SP, Eccleston ML. Nasal high-flow therapy delivers low level positive airway pressure. Br J Anaesth. 2011;107(9):98–1004.

    Google Scholar 

  28. Vargas F, Saint-Leger M, Boyer A, et al. Physiologic effects of high-flow nasal cannula oxygen in critical care subjects. Respir Care. 2015. pii: respcare.03814. [Epub ahead of print].

    Google Scholar 

  29. Hasani A, Chapman TH, McCool D, et al. Domiciliary humidification improves mucociliary clearance in patients with bronchiectasis. Chron Respir Dis. 2008;5:81–6.

    Article  CAS  PubMed  Google Scholar 

  30. Storgaard LH, Frystyck RN, Hockey H, et al. Exacerbations in COPD patients on LTOT treated with a nasal high flow system. Poster Session ERS Congress. 2014.

    Google Scholar 

  31. O’Neill B, Bradley JM, McArdle N, et al. The current physiotherapy management of patients with bronchiectasis: a UK survey. Int J Clin Pract. 2002;56:34–5.

    PubMed  Google Scholar 

  32. Mutalithas K, Watkin G, Willig B, et al. Improvement in health status following bronchopulmonary hygiene physical therapy in patients with bronchiectasis. Respir Med. 2008;102:1140–4.

    Article  PubMed  Google Scholar 

  33. Murray MP, Pentland JL, Hill AT. A randomised crossover trial of chest physiotherapy in non-cystic fibrosis bronchiectasis. Eur Respir J. 2009;34:1086–92.

    Article  CAS  PubMed  Google Scholar 

  34. King PT, Daviskas E. Management of bronchiectasis. Breathe. 2010;6(4):353–60.

    Article  Google Scholar 

  35. Bott J, Blumenthal S, Buxton M, et al. On behalf of the British Thoracic Society Physioterapy Guideline Development Group. Guidelines for the physiotherapy management of the adult, medical, spontaneously breathing patient. Thorax. 2009;64:i1–52.

    Article  PubMed  Google Scholar 

  36. Venturelli E, Crisafulli E, DeBiase A, et al. Efficacy of temporary positive expiratory pressure (TPEP) in patients with lung diseases and chronic mucus hypersecretion. The UNIKO® project: a multicentre randomized controlled trial. Clin Rehabil. 2013;27(4):336–46.

    Article  PubMed  Google Scholar 

  37. Nunn JF. Nunn’s applied respiratory physiology. 5th ed. Oxford: Butterworth-Heinemann; 2000.

    Google Scholar 

  38. Cecins N, Jenkins S, Pengelly J, et al. The active cycle of breathing techniques: to tip or not to tip? Respir Med. 1999;93:660–5.

    Article  CAS  PubMed  Google Scholar 

  39. Fauroux B, Boule M, Lofaso F, et al. Chest physiotherapy in cystic fibrosis: improved tolerance with nasal pressure support ventilation. Pediatrics. 1999;103(3), E32.

    Article  CAS  PubMed  Google Scholar 

  40. Williams CA, Saynor ZL, Tomlinson OW, et al. Cystic fibrosis and physiological responses to exercise. Expert Rev Respir Med. 2014;8(6):751–62.

    Article  CAS  PubMed  Google Scholar 

  41. Burtin C, Hebestreit H. Rehabilitation in patients with chronic respiratory disease other than chronic obstructive pulmonary disease: exercise and physical activity interventions in cystic fibrosis and non-cystic fibrosis bronchiectasis. Respiration. 2015;89(3):181–9.

    Article  PubMed  Google Scholar 

  42. Janssens JP, de Muralt B, Titelion V. Management of dyspnea in severe chronic obstructive pulmonary disease. J Pain Symptom Manage. 2000;19(5):378–92.

    Article  CAS  PubMed  Google Scholar 

  43. Henke KG, Regnis JA, Bye PTP. Benefits of continuous positive airway pressure during exercise in cystic fibrosis and relationship to disease severity. Am Rev Respir Dis. 1993;148:1272–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annia Schreiber MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schreiber, A., Antonelli, A., Gregoretti, C. (2016). Noninvasive Continuous Positive Airway Pressure Response in Bronchiectasis Exacerbations: Key Practical Aspects and Topics. In: Esquinas, A. (eds) Noninvasive Mechanical Ventilation. Springer, Cham. https://doi.org/10.1007/978-3-319-21653-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21653-9_35

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21652-2

  • Online ISBN: 978-3-319-21653-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics