Skip to main content

Recent Progress in Adaptive-Partitioning QM/MM Methods for Born-Oppenheimer Molecular Dynamics

  • Chapter
  • First Online:
Quantum Modeling of Complex Molecular Systems

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 21))

Abstract

Molecular dynamics simulations based on adaptive QM/MM methods feature on-the-fly reclassifications of atoms and molecular groups as either QM or MM without causing abrupt changes in the trajectory propagations, thus allowing QM subsystems to automatically change over time. Such treatments are not possible in the framework of conventional QM/MM, where the QM and MM partitions are predetermined and immutable throughout the simulation. The present contribution reviews the recent progress in the adaptive QM/MM algorithms developed by ourselves and our collaborators, namely the family of adaptive-partitioning (AP) schemes. Initially developed for the studies of solvated ions and molecules, AP methods have been extended to model large molecules, such as biopolymers, to monitor the exchange of solvent molecules between a protein active site and the bulk solvent, and to describe proton hopping in water via the Grotthuss mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP:

Adaptive-partitioning

BEST:

Boundary-based-on-exchange-symmetry-theory

BZ:

Buffer zone

CG:

Coarse-grained

DAS:

Difference-based adaptive solvation

EEMB:

Electrostatically embedded many-body expansion

FIRES:

Flexible inner region ensemble separator

MD:

Molecular dynamics

MM:

Molecular-mechanics

mPAP:

Modified permuted adaptive-partitioning

NVE :

Microcanonical ensemble

NVT :

Canonical ensemble

ONIOM-XS:

Our own n-layered integrated molecular orbital and molecular mechanics-exchange of solvent

QM:

Quantum-mechanics

QM/MM:

Combined quantum-mechanics/molecular mechanics

QM/MM-LPS:

Combined quantum-mechanics/molecular mechanics with large primary-subsystem

PAP:

Permuted adaptive-partitioning

PS:

Primary subsystem

RC:

Redistributed charge

RCD:

Redistributed charge and dipole

SAP:

Sorted adaptive-partitioning

SCMP:

Size-consistent multi-partitioning

SS:

Secondary subsystem

References

  1. Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249

    Article  CAS  Google Scholar 

  2. Singh UC, Kollmann PA (1986) A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3Cl + Cl exchange reaction and gas phase protonation of polyethers. J Comput Chem 7:718–730

    Article  CAS  Google Scholar 

  3. Field MJ, Bash PA, Karplus M (1990) A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem 11:700–733

    Article  CAS  Google Scholar 

  4. Gao J (1996) Methods and applications of combined quantum mechanical and molecular mechanical potentials. Rev Comput Chem 7:119–185

    CAS  Google Scholar 

  5. Mordasini T, Thiel W (1998) Computational chemistry column. Combined quantum mechanical and molecular approaches. Chimia 52:288–291

    CAS  Google Scholar 

  6. Hillier IH (1999) Chemical reactivity studied by hybrid QM/MM methods. Theochem 463:45–52

    Article  CAS  Google Scholar 

  7. Monard G, Merz KM Jr (1999) Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems. Acc Chem Res 32:904–911

    Article  CAS  Google Scholar 

  8. Hammes-Schiffer S (2000) Theoretical perspectives on proton-coupled electron transfer reactions. Acc Chem Res 34:273–281

    Article  Google Scholar 

  9. Sherwood P (2000): Hybrid quantum mechanics/molecular mechanics approaches. In: Grotendorst J (ed) Modern methods and algorithms of quantum chemistry, vol 3. John von Neumann-Institute, Ho Chi Minh, pp 285–305

    Google Scholar 

  10. Gao J, Truhlar DG (2002) Quantum mechanical methods for enzyme kinetics. Annu Rev Phys Chem 53:467–505

    Article  CAS  Google Scholar 

  11. Morokuma K (2002) New challenges in quantum chemistry: quests for accurate calculations for large molecular systems. Philos Trans R Soc Lond, Ser A 360:1149–1164

    Article  CAS  Google Scholar 

  12. Riccardi D, Schaefer P, Yang Y, Yu H, Ghosh N, Prat-Resina X, König P, Li G, Xu D, Guo H et al (2006) Development of effective quantum mechanical/molecular mechanical (QM/MM) methods for complex biological process. J Phys Chem B 110:6458–6469

    Article  CAS  Google Scholar 

  13. Lin H, Truhlar DG (2007) QM/MM: What have we learned, where are we, and where do we go from here? Theor Chem Acc 117:185–199

    Article  CAS  Google Scholar 

  14. Senn HM, Thiel W (2007) QM/MM methods for biological systems. Top Curr Chem 268:173–290

    Article  CAS  Google Scholar 

  15. Hu H, Yang W (2008) Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods. Annu Rev Phys Chem 59:573–601

    Article  CAS  Google Scholar 

  16. Sherwood P, Brooks BR, Sansom MSP (2008) Multiscale methods for macromolecular simulations. Curr Opin Struct Biol 18:630–640

    Article  CAS  Google Scholar 

  17. Bernstein N, Kermode JR, Csányi G (2009) Hybrid atomistic simulation methods for materials systems. Rep Progr Phys 72:026501/1–25

    Google Scholar 

  18. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed 48:1198–1229

    Article  CAS  Google Scholar 

  19. Acevedo O, Jorgensen WL (2010) Advances in quantum and molecular mechanical (QM/MM) simulations for organic and enzymatic reactions. Acc Chem Res 43:142–151

    Article  CAS  Google Scholar 

  20. Sabin JR, Brändas E (eds) (2010) Combining quantum mechanics and molecular mechanics. Some recent progresses in QM/MM methods. Academic Press, New York

    Google Scholar 

  21. Yohsuke H, Masaru T (2010) Recent advances in jointed quantum mechanics and molecular mechanics calculations of biological macromolecules: schemes and applications coupled to ab initio calculations. J Phys: Condens Matter 22:413101/1–7

    Google Scholar 

  22. Ferrer S, Ruiz-Pernia J, Marti S, Moliner V, Tunon I, Bertran J, Andres J (2011) Hybrid schemes based on quantum mechanics/molecular mechanics simulations: Goals to success, problems, and perspectives. In Christov C (ed) Advances in protein chemistry and structural biology, vol 85: computational chemistry methods in structural biology. Advances in protein chemistry and structural biology, vol 85. Elsevier Academic Press Inc, New York, pp 81–142

    Google Scholar 

  23. Menikarachchi LC, Gascon JA (2010) QM/MM approaches in medicinal chemistry research. Curr Top Med Chem 10:46–54

    Article  CAS  Google Scholar 

  24. Wallrapp FH, Guallar V (2011) Mixed quantum mechanics and molecular mechanics methods: looking inside proteins. Wiley Interdiscip Rev: Comput Mol Sci 1:315–322

    CAS  Google Scholar 

  25. Woodcock HL, Miller BT, Hodoscek M, Okur A, Larkin JD, Ponder JW, Brooks BR (2011) MSCALE: a general utility for multiscale modeling. J Chem Theory Comput 7:1208–1219

    Article  CAS  Google Scholar 

  26. Chung LW, Hirao H, Li X, Morokuma K (2012) The ONIOM method: its foundation and applications to metalloenzymes and photobiology. Wiley Interdiscip Rev: Comput Mol Sci 2:327–350

    CAS  Google Scholar 

  27. Keil FJ (2012) Multiscale modelling in computational heterogeneous catalysis. In Kirchner B, Vrabec J (eds) Multiscale molecular methods in applied chemistry. Topics in current chemistry, vol 307. Springer, Berlin, pp 69–107

    Google Scholar 

  28. Lonsdale R, Harvey JN, Mulholland AJ (2012) A practical guide to modelling enzyme-catalysed reactions. Chem Soc Rev 41:3025–3038

    Article  CAS  Google Scholar 

  29. Monari A, Rivail J-L, Assfeld X (2012) Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations. Acc Chem Res 46:596–603

    Article  Google Scholar 

  30. Site L, Holm C, Vegt NA (2012) Multiscale approaches and perspectives to modeling aqueous electrolytes and polyelectrolytes. In: Kirchner B, Vrabec J (eds) Multiscale molecular methods in applied chemistry. Topics in current chemistry, vol 307. Springer, Berlin, pp 251–294

    Google Scholar 

  31. Wu R, Cao Z, Zhang Y (2012) Computational simulations of zinc enzyme: challenges and recent advances. Progr Chem 24:1175–1184

    CAS  Google Scholar 

  32. Mennucci B (2013) Modeling environment effects on spectroscopies through QM/classical models. Phys Chem Chem Phys 15:6583–6594

    Article  CAS  Google Scholar 

  33. Kussmann J, Beer M, Ochsenfeld C (2013) Linear-scaling self-consistent field methods for large molecules. Wiley Interdiscip Rev: Comput Mol Sci 3:614–636

    CAS  Google Scholar 

  34. Meier K, Choutko A, Dolenc J, Eichenberger AP, Riniker S, van Gunsteren WF (2013) Multi-resolution simulation of biomolecular systems: a review of methodological issues. Angew Chem Int Ed 52:2820–2834

    Google Scholar 

  35. van der Kamp MW, Mulholland AJ (2013) Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 52:2708–2728

    Article  Google Scholar 

  36. Pezeshki S, Lin H (2014) Recent developments in QM/MM methods towards open-boundary multi-scale simulations. Mol Simul 41:168–189

    Article  Google Scholar 

  37. Rode BM, Schwenk CF, Hofer TS, Randolf BR (2005) Coordination and ligand exchange dynamics of solvated metal ions. Coord Chem Rev 249:2993–3006

    Article  CAS  Google Scholar 

  38. Yockel S, Schatz G (2012) Dynamic QM/MM: a hybrid approach to simulating gas-liquid interactions. In: Kirchner B, Vrabec J (eds) Multiscale molecular methods in applied chemistry. Topics in current chemistry, vol 307. Springer, Berlin, pp 43–67

    Google Scholar 

  39. Allen C, McCann BW, Acevedo O (2014) Ionic liquid effects on nucleophilic aromatic substitution reactions from QM/MM simulations. J Phys Chem B

    Google Scholar 

  40. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474

    Article  CAS  Google Scholar 

  41. Woo TK, Cavallo L, Ziegler T (1998) Implementation of the IMOMM methodology for performing combined QM/MM molecular dynamics simulations and frequency calculations. Theor Chem Acc 100:307–313

    Article  CAS  Google Scholar 

  42. Eichinger M, Tavan P, Hutter J, Parrinello M (1999) A hybrid method for solutes in complex solvents: density functional theory combined with empirical force fields. J Chem Phys 110:10452–10467

    Article  CAS  Google Scholar 

  43. Woo TK, Margl PM, Deng L, Cavallo L, Ziegler T (1999) Combined QM/MM and ab initio molecular dynamics modeling of homogeneous catalysis. ACS Symp Ser 721:173–186

    Article  CAS  Google Scholar 

  44. Röthlisberger U, Carloni P, Doclo K, Parrinello M (2000) A comparative study of galactose oxidase and active site analogs based on QM/MM Car-Parrinello simulations. J Biol Inorg Chem 5:236–250

    Article  Google Scholar 

  45. Woo TK, Blöchl PE, Ziegler T (2000) Towards solvation simulations with a combined ab initio molecular dynamics and molecular mechanics approach. Theochem 506:313–334

    Article  CAS  Google Scholar 

  46. Colombo MC, Guidoni L, Laio A, Magistrato A, Maurer P, Piana S, Rohrig U, Spiegel K, Sulpizi M, VandeVondele J et al (2002) Hybrid QM/MM Car-Parrinello simulations of catalytic and enzymatic reactions. Chimia 56:13–19

    Article  CAS  Google Scholar 

  47. Laio A, VandeVondele J, Röthlisberger U (2002) A Hamiltonian electrostatic coupling scheme for hybrid Car-Parrinello molecular dynamics simulations. J Chem Phys 116:6941–6947

    Article  CAS  Google Scholar 

  48. Woo TK, Margl P, Blochl PE, Ziegler T (2002) Sampling phase space by a combined QM/MM ab initio Car-Parrinello molecular dynamics method with different (multiple) time steps in the quantum mechanical (QM) and molecular mechanical (MM) domains. J Phys Chem A 106:1173–1182

    Article  CAS  Google Scholar 

  49. Sulpizi M, Laio A, VandeVondele J, Cattaneo A, Röthlisberger U, Carloni P (2003) Reaction mechanism of caspases: insights from QM/MM Ca-Parrinello simulations. Proteins: Struct, Function, Genet 52:212–224

    Google Scholar 

  50. Raugei S, Cascella M, Carloni P (2004) A proficient enzyme: insights on the mechanism of orotidine monophosphate decarboxylase from computer simulations. J Am Chem Soc 126:15730–15737

    Article  CAS  Google Scholar 

  51. Laino T, Mohamed F, Laio A, Parrinello M (2006) An efficient linear-scaling electrostatic coupling for treating periodic boundary conditions in QM/MM simulations. J Chem Theory Comput 2:1370–1378

    Article  CAS  Google Scholar 

  52. Kerdcharoen T, Liedl KR, Rode BM (1996) A QM/MM simulation method applied to the solution of Li+ in liquid ammonia. Chem Phys 211:313–323

    Article  CAS  Google Scholar 

  53. Kerdcharoen T, Morokuma K (2002) ONIOM-XS: an extension of the ONIOM method for molecular simulation in condensed phase. Chem Phys Lett 355:257–262

    Article  CAS  Google Scholar 

  54. Kerdcharoen T, Morokuma K (2003) Combined quantum mechanics and molecular mechanics simulation of Ca2+/ammonia solution based on the ONIOM-XS method: Octahedral coordination and implication to biology. J Chem Phys 118:8856–8862

    Article  CAS  Google Scholar 

  55. Heyden A, Lin H, Truhlar DG (2007) Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations. J Phys Chem B 111:2231–2241

    Article  CAS  Google Scholar 

  56. Bulo RE, Ensing B, Sikkema J, Visscher L (2009) Toward a practical method for adaptive QM/MM simulations. J Chem Theory Comput 5:2212–2221

    Article  CAS  Google Scholar 

  57. Guthrie MG, Daigle AD, Salazar MR (2009) Properties of a method for performing adaptive, multilevel QM simulations of complex chemical reactions in the gas-phase. J Chem Theory Comput 6:18–25

    Article  Google Scholar 

  58. Nielsen SO, Bulo RE, Moore PB, Ensing B (2010) Recent progress in adaptive multiscale molecular dynamics simulations of soft matter. Phys Chem Chem Phys 12:12401–12414

    Article  CAS  Google Scholar 

  59. Poma AB, Delle Site L (2010) Classical to path-integral adaptive resolution in molecular simulation: towards a smooth quantum-classical coupling. Phys Rev Lett 104:250201/1–4

    Google Scholar 

  60. Pezeshki S, Lin H (2011) Adaptive-partitioning redistributed charge and dipole schemes for QM/MM dynamics simulations: on-the-fly relocation of boundaries that pass through covalent bonds. J Chem Theory Comput 7:3625–3634

    Article  CAS  Google Scholar 

  61. Bernstein N, Varnai C, Solt I, Winfield SA, Payne MC, Simon I, Fuxreiter M, Csanyi G (2012) QM/MM simulation of liquid water with an adaptive quantum region. Phys Chem Chem Phys 14:646–656

    Article  CAS  Google Scholar 

  62. Park K, Gotz AW, Walker RC, Paesani F (2012) Application of adaptive QM/MM methods to molecular dynamics simulations of aqueous systems. J Chem Theory Comput 8:2868–2877

    Article  CAS  Google Scholar 

  63. Takenaka N, Kitamura Y, Koyano Y, Nagaoka M (2012) The number-adaptive multiscale QM/MM molecular dynamics simulation: application to liquid water. Chem Phys Lett 524:56–61

    Article  CAS  Google Scholar 

  64. Várnai C, Bernstein N, Mones L, Csányi G (2013) Tests of an adaptive QM/MM calculation on free energy profiles of chemical reactions in solution. J Phys Chem B 117:12202–12211

    Article  Google Scholar 

  65. Watanabe HC, Kubař T, Elstner M (2014) Size-consistent multipartitioning QM/MM: a stable and efficient adaptive QM/MM method. J Chem Theory Comput 10:4242–4252

    Article  CAS  Google Scholar 

  66. Pezeshki S, Davis C, Heyden A, Lin H (2014) Adaptive-partitioning QM/MM dynamics simulations: 3. Solvent molecules entering and leaving protein binding sites. J Chem Theory Comput 10:4765–4776

    Article  CAS  Google Scholar 

  67. Pezeshki S, Lin H (2015) Adaptive-partitioning QM/MM for molecular dynamics simulations: 4. Proton hopping in bulk water. J Chem Theory Comput 11:2398–2411

    Google Scholar 

  68. Rowley CN, Roux B (2012) The solvation structure of Na+ and K+ in liquid water determined from high level ab Initio molecular dynamics simulations. J Chem Theory Comput 8:3526–3535

    Article  CAS  Google Scholar 

  69. Shiga M, Masia M (2013) Boundary based on exchange symmetry theory for multilevel simulations. I. Basic theory. J Chem Phys 139:044120/1–8

    Google Scholar 

  70. Heyden A, Truhlar DG (2008) Conservative algorithm for an adaptive change of resolution in mixed atomistic/coarse-grained multiscale simulations. J Chem Theory Comput 4:217–221

    Article  CAS  Google Scholar 

  71. Praprotnik M, Poblete S, Delle Site L, Kremer K (2011) Comment on “Adaptive multiscale molecular dynamics of macromolecular fluids”. Phys Rev Lett 107:099801/1–2

    Google Scholar 

  72. Kästner J, Thiel W (2005) Bridging the gap between thermodynamic integration and umbrella sampling provides a novel analysis method: “umbrella integration”. J Chem Phys 123:144104/1–5

    Google Scholar 

  73. Carter EA, Ciccotti G, Hynes JT, Kapral R (1989) Constrained reaction coordinate dynamics for the simulation of rare events. Chem Phys Lett 156:472–477

    Article  CAS  Google Scholar 

  74. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99:12562–12566

    Article  CAS  Google Scholar 

  75. Darve E, Pohorille A (2001) Calculating free energies using average force. J Chem Phys 115:9169–9183

    Article  CAS  Google Scholar 

  76. Dahlke EE, Truhlar DG (2007) Electrostatically embedded many-body expansion for large systems, with applications to water clusters. J Chem Theory Comput 3:46–53

    Article  CAS  Google Scholar 

  77. Dahlke EE, Truhlar DG (2007) Electrostatically Embedded many-body correlation energy, with applications to the calculation of accurate second-order Moller-Plesset Perturbation Theory energies for large water clusters. J Chem Theory Comput 3:1342–1348

    Article  CAS  Google Scholar 

  78. Speetzen ED, Leverentz HR, Lin H, Donald GT (2011) Electrostatically embedded many-body expansion for large systems. In: Manby FR (ed) Accurate condensed-phase quantum chemistry. Computation in chemistry. CRC Press, Taylor & Francis, New York, pp 105–127

    Google Scholar 

  79. Lin H, Truhlar DG (2005) Redistributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations. J Phys Chem A 109:3991–4004

    Article  CAS  Google Scholar 

  80. Dutzler R, Campbell EB, MacKinnon R (2003) Gating the selectivity filter in ClC chloride channels. Science 300:108–112

    Article  CAS  Google Scholar 

  81. Agmon N (1995) The Grotthuss mechanism. Chem Phys Lett 244:456–462

    Article  CAS  Google Scholar 

  82. Wu X, Thiel W, Pezeshki S, Lin H (2013) Specific reaction path Hamiltonian for proton transfer in water: reparameterized semiempirical models. J Chem Theory Comput 9:2672–2686

    Article  CAS  Google Scholar 

  83. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  84. Marx D, Tuckerman ME, Hutter J, Parrinello M (1999) The nature of the hydrated excess proton in water. Nature 397:601–604

    Article  CAS  Google Scholar 

  85. Marx D, Tuckerman ME, Parrinello M (2000) Solvated excess protons in water: quantum effects on the hydration structure. J Phys: Condens Matter 12:A153–A159

    CAS  Google Scholar 

  86. Bulo RE, Michel C, Fleurat-Lessard P, Sautet P (2013) Multiscale modeling of chemistry in water: are we there yet? J Chem Theory Comput 9:5567–5577

    Article  CAS  Google Scholar 

  87. Zhang Y, Lin H (2008) Flexible-boundary quantum-mechanical/molecular-mechanical calculations: partial charge transfer between the quantum-mechanical and molecular-mechanical subsystems. J Chem Theory Comput 4:414–425

    Article  CAS  Google Scholar 

  88. Zhang Y, Lin H (2010) Flexible-boundary QM/MM calculations: II. Partial charge transfer across the QM/MM boundary that passes through a covalent bond. Theoret Chem Acc 126:315–322

    Article  CAS  Google Scholar 

  89. Pezeshki S, Lin H (2014) Molecular dynamics simulations of ion solvation by flexible-boundary QM/MM: on-the-fly partial charge transfer between QM and MM subsystems. J Comput Chem 35:1778–1788

    Article  CAS  Google Scholar 

  90. Abrams CF (2005) Concurrent dual-resolution Monte Carlo simulation of liquid methane. J Chem Phys 123:234101/234101–234113

    Google Scholar 

  91. Praprotnik M, Delle Site L, Kremer K (2005) Adaptive resolution molecular-dynamics simulation: changing the degrees of freedom on the fly. J Chem Phys 123:224106/1–14

    Google Scholar 

  92. Ensing B, Nielsen SO, Moore PB, Klein ML, Parrinello M (2007) Energy conservation in adaptive hybrid atomistic/coarse-grain molecular dynamics. J Chem Theory Comput 3:1100–1105

    Article  CAS  Google Scholar 

  93. Praprotnik M, Matysiak S, Site LD, Kremer K, Clementi C (2007) Adaptive resolution simulation of liquid water. J Phys: Condens Matter 19:292201/1–10

    Google Scholar 

  94. Wang H, Schütte C, Delle Site L (2012) Adaptive resolution simulation (AdResS): a smooth thermodynamic and structural transition from atomistic to coarse grained resolution and vice versa in a grand canonical fashion. J Chem Theory Comput 8:2878–2887

    Article  CAS  Google Scholar 

  95. Wang H, Hartmann C, Schütte C, Delle Site L (2013) Grand-canonical-like molecular-dynamics simulations by using an adaptive-resolution technique. Phys Rev X 3:011018/1–16

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Science Foundation (CHE-0952337). This work used the Extreme Science and Engineering Discovery Environment (XSEDE) under grant CHE-140070, which is supported by National Science Foundation grant number ACI-1053575. HL thanks the Camille & Henry Dreyfus Foundation for support (TH-14-028). We are grateful to Adam Duster for critically reading our manuscript.

Disclosure statement:

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pezeshki, S., Lin, H. (2015). Recent Progress in Adaptive-Partitioning QM/MM Methods for Born-Oppenheimer Molecular Dynamics. In: Rivail, JL., Ruiz-Lopez, M., Assfeld, X. (eds) Quantum Modeling of Complex Molecular Systems. Challenges and Advances in Computational Chemistry and Physics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-21626-3_3

Download citation

Publish with us

Policies and ethics