Feedforward Control Based on Inverse Hysteresis Models

  • Qingsong XuEmail author
  • Kok Kiong Tan
Part of the Advances in Industrial Control book series (AIC)


This chapter presents the rate-dependent hysteresis compensation of a piezoelectric nanopositioning stage using the feedforward control based on an inverse hysteresis model. Three different controllers are realized and compared, which employ Bouc–Wen model, modified Prandtl–Ishlinskii (MPI) model, and least squares support vector machines (LSSVM)-based intelligent model, respectively. Experimental studies demonstrate the superiority of LSSVM model in hysteresis modeling and compensation tasks.


PSOParticle Swarm Optimization LSSVMLeast Square Support Vector Machine Mean Absolute Error Hysteresis Model LSSVMLeast Square Support Vector Machine Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ang, W.T., Khosla, P.K., Riviere, C.N.: Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Trans. Mechatron. 12(2), 134–142 (2007)CrossRefGoogle Scholar
  2. 2.
    Birge, B.: PSOt—a particle swarm optimization toolbox for use with Matlab. In: Proceedings of IEEE Swarm Intelligence Symposium, pp. 182–186. Indianapolis, Indiana, USA (2003)Google Scholar
  3. 3.
    Boukari, A.F., Carmona, J.C., Moraru, G., Malburet, F., Chaaba, A., Douimi, M.: Piezo-actuators modeling for smart applications. Mechatronics 21(1), 339–349 (2011)CrossRefGoogle Scholar
  4. 4.
    De Brabanter, K., Karsmakers, P., Ojeda, F., Alzate, C., De Brabanter, J., Pelckmans, K., De Moor, B., Vandewalle, J., Suykens, J.A.K.: LS-SVMlab toolbox user’s guide version 1.7. Internal Report 10-146, ESAT-SISTA, K.U.Leuven, Leuven, Belgium (2010)Google Scholar
  5. 5.
    Dong, R., Tan, Y., Chen, H., Xie, Y.: A neural networks based model for rate-dependent hysteresis for piezoelectric actuators. Sens. Actuator A-Phys. 143(2), 370–376 (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ge, P., Jouaneh, M.: Tracking control of a piezoceramic actuator. IEEE Trans. Contr. Syst. Technol. 4(3), 209–216 (1996)CrossRefGoogle Scholar
  7. 7.
    Janaideh, M.A., Rakheja, S., Su, C.Y.: Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator. Mechatronics 19(5), 656–670 (2009)CrossRefzbMATHGoogle Scholar
  8. 8.
    Juhasz, L., Maas, J., Borovac, B.: Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators. Mechatronics 21(1), 329–338 (2011)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kim, J., Kang, B.: Micro-macro linear piezoelectric motor based on self-moving cell. Mechatronics 19(7), 1134–1142 (2009)CrossRefGoogle Scholar
  10. 10.
    Kuhnen, K.: Modeling, identification and compensation of complex hysteretic nonlinearities: a modified Prandtl-Ishlinskii approach. Eur. J. Control 9(4), 407–421 (2003)CrossRefGoogle Scholar
  11. 11.
    Li, Y., Xu, Q.: Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator. IEEE Trans. Contr. Syst. Technol. 18(4), 798–810 (2010)CrossRefGoogle Scholar
  12. 12.
    Lin, C.J., Chen, S.Y.: Evolutionary algorithm based feedforward control for contouring of a biaxial piezo-actuated stage. Mechatronics 19(6), 829–839 (2009)CrossRefGoogle Scholar
  13. 13.
    Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Suykens, J.A.K., Gestel, T.V., Brabanter, J.D., Moor, B.D., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific Publishing Co., Singapore (2002)CrossRefzbMATHGoogle Scholar
  15. 15.
    Van Gestel, T., Suykens, J.A.K., Baestaens, D.E., Lambrechts, A., Lanckriet, G., Vandaele, B., De Moor, B., Vandewalle, J.: Financial time series prediction using least squares support vector machines within the evidence framework. IEEE Trans. Neural Netw. 12(4), 809–821 (2001)CrossRefGoogle Scholar
  16. 16.
    Vong, C.M., Wong, P.K., Li, Y.P.: Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference. Eng. Appl. Artif. Intell. 19(3), 277–287 (2006)CrossRefGoogle Scholar
  17. 17.
    Wong, P.K., Vong, C.M., Tam, L.M., Li, K.: Data preprocessing and modelling of electronically-controlled automotive engine power performance using kernel principal components analysis and least-square support vector machines. Int. J. Veh. Syst. Model. Test. 3(4), 312–330 (2008)Google Scholar
  18. 18.
    Xu, Q., Li, Y.: Dahl model-based hysteresis compensation and precise positioning control of an XY parallel micromanipulator with piezoelectric actuation. J. Dyn. Syst. Meas. Control-Trans. ASME 132(4), 041,011 (2010)Google Scholar
  19. 19.
    Yang, J., Bouzerdoum, A., Phung, S.L.: A training algorithm for sparse LS-SVM using compressive sampling. In: Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing, pp. 2054–2057 (2010)Google Scholar
  20. 20.
    Yu, S., Alici, G., Shirinzadeh, B., Smith, J.: Sliding mode control of a piezoelectric actuator with neural network compensating rate-dependent hysteresis. In: Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 3641–3645 (2005)Google Scholar
  21. 21.
    Yu, Y., Xiao, Z., Naganathan, N.G., Dukkipati, R.V.: Dynamic Preisach modelling of hysteresis for the piezoceramic actuator system. Mech. Mach. Theory 37(1), 75–89 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Electromechanical EngineeringUniversity of MacauMacauChina
  2. 2.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations