Adaptive Impedance Control of Piezoelectric Microgripper

  • Qingsong XuEmail author
  • Kok Kiong Tan
Part of the Advances in Industrial Control book series (AIC)


Delicate interaction control is a crucial issue for automated microsystems dedicated to micromanipulation of microobjects. This chapter presents a framework of digital sliding mode generalized impedance control with adaptive switching gain to regulating both the position and contact force of a piezoelectric-bimorph microgripper for micromanipulation and microassembly applications. Based on a second-order dynamics model, its implementation does not require a state observer and a hysteresis/creep model. The stability of the control system is proved in theory, which ensures the tracking performance in the presence of model uncertainties and disturbances. The effectiveness of the scheme is validated by experimental investigations on the grasp operation of a microgear.


Contact Force Impedance Control Interaction Control Force Error Switching Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Almeida, F., Lopes, A., Abreu, P.: Force-impedance control: A new control strategy of robotic manipulators. In: Kaynak, O., Tosunoglu, S., Ang, M. (eds.) Recent Advances in Mechatronics, pp. 126–137. Springer, Singapore (1999)Google Scholar
  2. 2.
    Bargiel, S., Rabenorosoa, K., Clévy, C., Gorecki, C., Lutz, P.: Towards micro-assembly of hybrid MOEMS components on a reconfigurable silicon free-space micro-optical bench. J. Micromech. Microeng. 20(4), 045012 (2010)CrossRefGoogle Scholar
  3. 3.
    Beyeler, F., Neild, A., Oberti, S., Bell, D.J., Sun, Y., Dual, J., Nelson, B.J.: Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field. J. Microelectromech. Syst. 16(1), 7–15 (2007)CrossRefGoogle Scholar
  4. 4.
    Bonitz, R.G., Hsia, T.C.: Internal force-based impedance control for cooperating manipulators. IEEE Trans. Robot. Autom. 12(1), 78–89 (1996)CrossRefGoogle Scholar
  5. 5.
    Chan, S.P., Liaw, H.C.: Generalized impedance control of robot for assembly tasks requiring compliant manipulation. IEEE Trans. Ind. Electron. 43(4), 453–461 (1996)CrossRefGoogle Scholar
  6. 6.
    Chonan, S., Jiang, Z.W., Koseki, M.: Soft-handling gripper driven by piezoceramic bimorph strips. Smart Mater. Struct. 5, 407–414 (1996)CrossRefGoogle Scholar
  7. 7.
    Elmali, H., Olgac, N.: Implementation of sliding mode control with perturbation estimation (SMCPE). IEEE Trans. Control Syst. Technol. 4(1), 79–85 (1996)CrossRefGoogle Scholar
  8. 8.
    Furuta, K.: Sliding mode control of a discrete system. Syst. Control Lett. 14(2), 145–152 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Haddab, Y., Chaillet, N., Bourjault, A.: A microgripper using smart piezoelectric actuators. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 659–664. Takamatsu, Japan (2000)Google Scholar
  10. 10.
    Hogan, N.: Stable execution of contact tasks using impedance control. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1047–1054. Raleigh, North Carolina, USA (1987)Google Scholar
  11. 11.
    Huang, H.B., Sun, D., Mills, J.K., Cheng, S.H.: Robotic cell injection system with position and force control: toward automatic batch biomanipulation. IEEE Trans. Robot. 25(3), 727–737 (2009)CrossRefGoogle Scholar
  12. 12.
    Huang, X., Cai, J., Wang, M., Lv, X.: A piezoelectric bimorph micro-gripper with micro-force sensing. In: IEEE International Conference on Information Acquisition, pp. 145–149. Hong Kong and Macau, China (2005)Google Scholar
  13. 13.
    Jung, S., Hsia, T.C., Bonitz, R.G.: Force tracking impedance control for robot manipulators with an unknown environment: theory, simulation, and experiment. Int. J. Robot. Res. 20(9), 765–774 (2001)CrossRefGoogle Scholar
  14. 14.
    Jung, S., Hsia, T.C., Bonitz, R.G.: Force tracking impedance control of robot manipulators under unknown environment. IEEE Trans. Control Syst. Technol. 12(3), 474–483 (2004)CrossRefGoogle Scholar
  15. 15.
    Kim, K., Liu, X., Zhang, Y., Sun, Y.: Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback. J. Micromech. Microeng. 18(5), 055013 (2008)CrossRefGoogle Scholar
  16. 16.
    Liaw, H.C., Shirinzadeh, B.: Robust generalised impedance control of piezo-actuated flexure-based four-bar mechanisms for micro/nano manipulation. Sens. Actuator A-Phys. 148(2), 443–453 (2008)Google Scholar
  17. 17.
    Lu, W.S., Meng, Q.H.: Impedance control with adaptation for robotic manipulations. IEEE Trans. Robot. Autom. 7(3), 408–415 (1991)CrossRefGoogle Scholar
  18. 18.
    Lu, Z., Chen, P.C.Y., Lin, W.: Force sensing and control in micromanipulation. IEEE Trans. Syst. Man Cybern. Part C, Appl. Rev. 36(6), 713–724 (2006)CrossRefGoogle Scholar
  19. 19.
    Lu, Z., Kawamura, S., Goldenberg, A.A.: An approach to sliding-mode based control. IEEE Trans. Robot. Autom. 11(5), 754–759 (1995)CrossRefGoogle Scholar
  20. 20.
    Menciassi, A., Eisinberg, A., Carrozza, M.C., Dario, P.: Force sensing microinstrument for measuring tissue properties and pulse in microsurgery. IEEE/ASME Trans. Mechatron. 8(1), 10–17 (2003)CrossRefGoogle Scholar
  21. 21.
    Monsees, G., Scherpen, J.M.A.: Adaptive switching gain for a discrete-time sliding mode controller. Int. J. Control 75(4), 242–251 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Qiu, L., Cui, Y., Feng, F.: Design of a new micro-gripper based on piezoelectric bimorphs. Appl. Mech. Mater. 101–102, 173–177 (2011)CrossRefGoogle Scholar
  23. 23.
    Rakotondrabe, M., Haddab, Y., Lutz, P.: Nonlinear modeling and estimation of force in a piezoelectric cantilever. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1–6. Zurich, Switzerland (2007)Google Scholar
  24. 24.
    Rakotondrabe, M., Ivan, I.A.: Development and force/position control of a new hybrid thermo-piezoelectric microgripper dedicated to micromanipulation tasks. IEEE Trans. Autom. Sci. Eng. 8(4), 824–834 (2011)CrossRefGoogle Scholar
  25. 25.
    Reddy, A.N., Maheshwari, N., Sahu, D.K., Ananthasuresh, G.K.: Miniature compliant grippers with vision-based force sensing. IEEE Trans. Robot. 26(5), 867–877 (2010)CrossRefGoogle Scholar
  26. 26.
    Sariola, V., Jaaskelainen, M., Zhou, Q.: Hybrid microassembly combining robotics and water droplet self-alignment. IEEE Trans. Robot. 26(6), 965–977 (2010)CrossRefGoogle Scholar
  27. 27.
    Sarpturk, S., Istefanopulos, Y., Kaynak, O.: On the stability of discrete-time sliding mode control systems. IEEE Trans. Autom. Control 32(10), 930–932 (1987)CrossRefzbMATHGoogle Scholar
  28. 28.
    Schutter, J.D., Bruyninckx, H., Zhu, W.H., Spong, M.W.: Force control: A bird’s eye view. In: Siciliano, B. (ed.) Control Problems in Robotics and Automation: Future Directions, pp. 1–17. Springer, Berlin (1998)CrossRefGoogle Scholar
  29. 29.
    Seki, H.: Modeling and impedance control of a piezoelectric bimorph microgripper. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 958–965. Raleigh, USA (1992)Google Scholar
  30. 30.
    Seraji, H., Colbaugh, R.: Force tracking in impedance control. Int. J. Robot. Res. 16(1), 97–117 (1997)CrossRefGoogle Scholar
  31. 31.
    Tarokh, M.: A discrete-time adaptive control scheme for robot manipulators. J. Robot. Syst. 7(2), 145–166 (1990)CrossRefzbMATHGoogle Scholar
  32. 32.
    Wu, J., Shieh, L.S., Zhang, Y., Song, G.: Digital controller design for Bouc-Wen model with high-order hysteretic nonlinearities through approximated scalar sign function. Int. J. Sys. Sci. 42(10), 1581–1599 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Xu, Q.: A new method of force estimation in piezoelectric cantilever-based microgripper. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 574–579. Kaohsiung, Taiwan (2012)Google Scholar
  34. 34.
    Xu, Q.: Identification and compensation of piezoelectric hysteresis without modeling hysteresis inverse. IEEE Trans. Ind. Electron. 60(9), 3927–3937 (2013)CrossRefGoogle Scholar
  35. 35.
    Xu, Q., Li, Y.: Model predictive discrete-time sliding mode control of a nanopositioning piezostage without modeling hysteresis. IEEE Trans. Control Syst. Technol. 20(4), 983–994 (2012)CrossRefzbMATHGoogle Scholar
  36. 36.
    Zhang, L., Dong, J.: High-rate tunable ultrasonic force regulated nanomachining lithography with an atomic force microscope. Nanotechnology 23(8), 085303 (2012)CrossRefGoogle Scholar
  37. 37.
    Zhang, Y., Zou, Q.: High-speed force load in force measurement in liquid using scanning probe microscope. Rev. Sci. Instrum. 83(1), 013707 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Electromechanical EngineeringUniversity of MacauMacauChina
  2. 2.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations