Skip to main content
  • 726 Accesses

Abstract

Motivation for generalization of the quadrilateral construction is stimulated by examination of the wedge associated with vertex 1 of this element. The simplest rational function that vanishes on (2;3)2 is

$$\displaystyle{ \mathrm{f}_{1}(\mathrm{x,y})\; =\;\mathrm{ k}_{1}(1 -\mathrm{ x}^{2} -\mathrm{ y}^{2})/\mathrm{Q}_{ 1}\,(\mathrm{x,y})\;, }$$
(3.1)

and we seek Q1 to make this function linear on sides (1;2) and (3;1) of the 3-con. Let Q1 = a + bx + cy. On (3;1), y = 0 and

$$\displaystyle{ \mathrm{f}_{1}(\mathrm{x,y})\; =\; [(1 -\mathrm{ x}^{\mathrm{2}})/(\mathrm{a}\; +\;\mathrm{ bx})]\;\;\bmod \;\;(3;1)\;. }$$
(3.2)

For f1 to be linear on (3;1) with f1(x3, y3) = 0, we must have a = b. On side (1;2), x = 0 and

$$\displaystyle{ \mathrm{f}_{1}(\mathrm{x,y})\; \equiv \; [(1 -\mathrm{ y}^{\mathrm{2}})/(\mathrm{a}\; +\;\mathrm{ cy})]\;\;\bmod \;\;(1;2)\;. }$$
(3.3)

For f1 to be linear on (1;2) and f1(x2,y2) = 0, we must set a = c. When a = b = c:

$$\displaystyle{ \begin{array}{rl} \mathrm{f}_{1}(\mathrm{x,y})\;& \equiv \; (1 -\mathrm{ x})\;\;\bmod \;\;(3;1) \\ \;& \equiv \; (1 -\mathrm{ y})\;\;\bmod \;\;(1;2)\;.\end{array} }$$
(3.4)

Thus Q1 is the line on which 1 + x + y = 0, and a candidate for W1 is the function

$$\displaystyle{ \mathrm{f}_{1}(\mathrm{x,y})\; =\; (1 -\mathrm{ y}^{2} -\mathrm{ x}^{2})/(1\, +\;\mathrm{ x}\; +\;\mathrm{ y}). }$$
(3.5)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • H.S.M. Coxeter, Introduction to Geometry (Wiley, New York, 1961)

    MATH  Google Scholar 

  • J. Ergatoudis, Quadrilateral elements in plane analysis. Masters thesis, University of Wales, Swansea, 1966

    Google Scholar 

  • B.M. Irons, Numerical integration applied to finite element methods, in Conf. on use of Digital Computers in Structural Eng., University of Newcastle, 1966

    Google Scholar 

  • R. McLeod, A.R. Mitchell, The construction of basis functions for curved elements in the finite element method. J. Inst. Math. Appl. 10, 382–393 (1972)

    Article  MATH  Google Scholar 

  • R. McLeod, A.R. Mitchell, The use of parabolic arcs in matching curved boundaries in the finite element method. J. Inst. Math. Appl. 16, 239–246 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  • G. Strang, G.J. Fix, An Analysis of the Finite Element Method (Prentice Hall, Englewood Cliffs, 1973)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wachspress, E. (2016). Rational Wedges for Selected Polycons. In: Rational Bases and Generalized Barycentrics. Springer, Cham. https://doi.org/10.1007/978-3-319-21614-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21614-0_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21613-3

  • Online ISBN: 978-3-319-21614-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics