Skip to main content

Cervical PLDD (Percutaneous Laser Discectomy). Ten Years Experience

  • Chapter
Cervical Spine

Abstract

The Percutaneous Laser Disc Decompression/Denervation (PLDD) is a treatment option that has been known for several years. There has, however, been a controversial discussion about its indications and benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choy DS, Case RB, Fielding W, et al. Percutaneous laser nucleolysis of lumbar disks. N Engl J Med. 1987;317(12):771–2. doi:10.1056/NEJM198709173171217.

    Article  CAS  PubMed  Google Scholar 

  2. Choy DS, Altman PA, Case RB, et al. Laser radiation at various wavelengths for decompression of intervertebral disk. Experimental observations on human autopsy specimens. Clin Orthop Relat Res. 1991;(267):245–50.

    Google Scholar 

  3. Sherk HH, Black JD, Prodoehl JA, et al. Laser discectomy. Orthopedics. 1993;16(5):573–6.

    CAS  PubMed  Google Scholar 

  4. Siebert W, editor. Laser in der Orthopädie. Einsatzmöglichkeiten der Lasertechnik bei operativen und diagnostischen Verfahren am Bewegungsapparat. Stuttgart/New York: Thieme; 1991.

    Google Scholar 

  5. Uppal GS, Smith R, Aragon S, et al. In vivo comparison of two infrared laser wavelengths and two delivery systems used for lumbar disc decompression. Contemp Orthop. 1995;30(2):123–6.

    Google Scholar 

  6. Lane GJ, Prodoehl JA, Black J, et al. An experimental comparison of CO2, Argon, Nd:YAG and Ho:YAG Laser Ablation of Intervertebral Discs. Spine State Art Rev. 1993;7(1):1–9.

    Google Scholar 

  7. DePalma MJ, editor. ISpine. Evidence-based interventional spine care. New York: Demos Medical; 2011.

    Google Scholar 

  8. Min K, Leu H, Zweifel K. Quantitative determination of ablation in weight of lumbar intervertebral discs with holmium: YAG laser. Lasers Surg Med. 1996;18(2):187–90. doi:10.1002/(SICI)1096-9101(1996)18:2<187:AID-LSM9>3.0.CO;2-O.

    Article  CAS  PubMed  Google Scholar 

  9. Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58(11):R37–61. doi:10.1088/0031-9155/58/11/R37.

    Article  PubMed  Google Scholar 

  10. Palmer KF, Williams D. Optical properties of water in the near infrared. J Opt Soc Am. 1974;(64):1107–10.

    Google Scholar 

  11. Chance B, Wang NG, Maris M, et al. Quantitation of tissue optical characteristics and hemoglobin desaturation by time- and frequency-resolved multi-wavelength spectrophotometry. Adv Exp Med Biol. 1992;317:297–304.

    Article  CAS  PubMed  Google Scholar 

  12. Hale GM, Querry MR. Optical constants of water in the 200-nm to 200μm wavelength region. Appl Opt. 1973;12(3):555–63.

    Article  CAS  PubMed  Google Scholar 

  13. Kedenburg S, Vieweg M, Gissibl T, et al. Linear refractive index and absorption measurement of nonlinear optical liquids in the visible and near-infrared spectral region. Opt Mat Express. 2012;2(11):1588–611.

    Article  CAS  Google Scholar 

  14. Gangi A, Guth S, Guermazi A, editors. Imaging in percutaneous musculoskeletal interventions. Berlin/London: Springer; 2009.

    Google Scholar 

  15. Niemz MH. Laser tissue interactions. Fundamentals and applications; with 33 tables, 40 problems and solutions, 3 ed., 2. print. Berlin [u.a.]: Springer; 2007.

    Google Scholar 

  16. Waidelich W, Waidelich R, Hofstetter A, editors. Laser in der Medizin/Laser in Medicine. Berlin/Heidelberg: Springer; 1994.

    Google Scholar 

  17. Knappe V, Frank F, Rohde E. Principles of lasers and biophotonic effects. Photomed Laser Surg. 2004;22(5):411–7.

    Article  PubMed  Google Scholar 

  18. Thal R, Danziger MB, Kelly A. Delayed articular cartilage slough: two cases resulting from holmium:YAG laser damage to normal articular cartilage and a review of the literature. Arthroscopy. 1996;12(1):92–4.

    Article  CAS  PubMed  Google Scholar 

  19. Steiner R. Laser-Gewebe-Wechselwirkung. In: Raulin C, Karsai S, editors. Lasertherapie der Haut. Berlin: Springer; 2013. p. 26–39.

    Google Scholar 

  20. Berlin LMTB. Comparative study on the use of DIODE lasers and Nd:YAG lasers for medical applications. Berlin: Laser- and Medicine Technology; 1995.

    Google Scholar 

  21. Schlangmann BA, Schmolke S, Siebert WE. Temperatur- und Ablationsmessungen bei der Laserbehandlung von Bandscheibengewebe.; Temperature and ablation measurements in laser therapy of intervertebral disc tissue. Orthopade. 1996;25(1):3–9.

    CAS  PubMed  Google Scholar 

  22. Buchelt M, Schlangmann B, Schmolke S, et al. High-power Ho:YAG laser ablation of intervertebral discs. Effect on ablation rates and temperature profile. Lasers Surg Med. 1995;(16):179–83.

    Google Scholar 

  23. Choy DS, Altman P. Fall of intradiscal pressure with laser ablation. J Clin Laser Med Surg. 1995;13(3):149–51.

    CAS  PubMed  Google Scholar 

  24. Vorwerk D, Husemann T, Blazek V, et al. Laserablation des Nucleus pulposus. Optische Eigenschaften von degeneriertem Bandscheibengewebe im Wellenlängenbereich von 200 bis 2200 nm.; ÉALaser ablation of the nucleus pulposus: optical properties of degenerated intervertebral disk tissue in the wavelength range 200 to 2200 nmÉU. RöFo: Fortschritte auf dem Gebiete der Röntgenstrahlen und der Nuklearmedizin. 1989;151(6):725–8.

    CAS  PubMed  Google Scholar 

  25. Siebert W. Percutaneous laser discectomy of cervical discs: preliminary clinical results. J Clin Laser Med Surg. 1995;13(3):205–7.

    CAS  PubMed  Google Scholar 

  26. Hellinger J. Technical aspects of the percutaneous cervical and lumbar laser- disc-decompression and -nucleotomy. Neurol Res. 1999;21(1):99–102.

    Article  CAS  PubMed  Google Scholar 

  27. Wang JC, Kabo JM, Tsou PM, et al. The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model. Spine J. 2005;5(1):64–70. doi:10.1016/j.spinee.2004.10.047.

    Article  PubMed  Google Scholar 

  28. Streitparth F, Hartwig T, Walter T, et al. MR guidance and thermometry of percutaneous laser disc decompression in open MRI. An initial clinical investigation. Eur Radiol. 2013;23.

    Google Scholar 

  29. Stephanblome M (1997) Die Kernspintomographie als Untersuchungsmethode von Veränderungen an lumbalen Bandscheiben nach Anwendung der Laservaporisation mit dem Nd:YAG Laser. Eine Kernspintomographische und biomechanische Studie. Dissertation, WWU Münster.

    Google Scholar 

  30. Hellinger J, Stern S. 10 Jahre Erfahrung mit der intradiskalen Lasertherapie. Diskogen-Vertebrage Schmerzsyndrome. Erfahrungsbericht über 5000 Patienten. Orthopädie Rheuma. 2002;2002:38–41.

    Google Scholar 

  31. Schenk B, Brouwer PA, van Buchem MA. Experimental basis of percutaneous laser disc decompression (PLDD): a review of literature. Lasers Med Sci. 2006;21(4):245–9.

    Article  PubMed  Google Scholar 

  32. Bogduk N, Endres SM. Clinical anatomy of the lumbar spine and sacrum. 4th ed. New York: Elsevier/Churchill Livingstone; 2005.

    Google Scholar 

  33. Inman VT, Saunders JBDCM. Anatomicophysiological aspects of injuries to the intervertebral disc. J Bone Joint Surg Am. 1947;29(2):461–75.

    CAS  PubMed  Google Scholar 

  34. Freemont AJ, Peacock TE, Goupille P, et al. Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet. 1997;350(9072):178–81.

    Article  CAS  PubMed  Google Scholar 

  35. Mendel T, Wink CS, Zimny ML. Neural elements in human cervical intervertebral discs. Spine. 1992;17(2):132–5.

    Article  CAS  PubMed  Google Scholar 

  36. Kayama S, Konno S, Olmarker K, et al. Incision of the anulus fibrosus induces nerve root morphologic, vascular, and functional changes. An experimental study. Spine. 1996;21(22):2539–43.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao XL, Fu ZJ, Xu YG, et al. Treatment of lumbar intervertebral disc herniation using C-arm fluoroscopy guided target percutaneous laser disc decompression. Photomed Laser Surg. 2012;30(2):92–5.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Luo DX, Jin XJ, Li GT, et al. The use of targeted percutaneous laser disc decompression under the guidance of puncture-radiating pain leads to better short-term responses in lumbar disc herniation. Eur Rev Med Pharmacol Sci. 2014;18(20):3048–55.

    PubMed  Google Scholar 

  39. Iwatsuki K, Yoshimine T, Sasaki M, et al. The effect of laser irradiation for nucleus pulposus: an experimental study. Neurol Res. 2005;27(3):319–23.

    Article  PubMed  Google Scholar 

  40. Hellinger J. Simultane Lasernukleotomie bei zervikalen und lumbalen Bandscheibenvorfällen. In: Waidelich W, Waidelich R, Hofstetter A, editors. Laser in der Medizin/Laser in Medicine. Berlin/Heidelberg: Springer; 1994. p. 326–31.

    Google Scholar 

  41. Choy DS, Hellinger J, Hellinger S, et al. 23rd Anniversary of Percutaneous Laser Disc Decompression (PLDD). Photomed Laser Surg. 2009;27(4):535–8.

    Article  PubMed  Google Scholar 

  42. Choy DSJ, Fejos AS. Cervical disc herniations and percutaneous laser disc decompression: a case report. Photomed Laser Surg. 2004;22(5):423–5. doi:10.1089/pho.2004.22.423.

    Article  PubMed  Google Scholar 

  43. Harada J, Dohi M, Fukuda K, et al. CT-guided percutaneous laser disk decompression (PLDD) for cervical disk hernia. Radiat Med. 2001;19(5):263–6.

    CAS  PubMed  Google Scholar 

  44. Schmolke S, Kirsch L, Gossé F, et al. Risk evaluation of thermal injury to the cervical spine during intradiscal laser application in vitro. Photomed Laser Surg. 2004;22(5):426–30.

    Article  PubMed  Google Scholar 

  45. Li K, Qin H, Chen J. Clinical application of percutaneous laser disc decompression in the treatment of cervical disc herniation. Zhongguo xiu fu chong jian wai ke za zhi=Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery. 2007;21(5):465–7.

    Google Scholar 

  46. Knight MT, Goswami A, Patko JT. Cervical percutaneous laser disc decompression: preliminary results of an ongoing prospective outcome study. J Clin Laser Med Surg. 2001;19(1):3–8. doi:10.1089/104454701750066875.

    Article  CAS  PubMed  Google Scholar 

  47. Siebert WE, Ksinsik B, Wirth CJ, et al. In-Vitro Untersuchungen zur thermischen Belastung de Bandscheibe bei der Laserablation. In: Siebert W, editor. Laser in der Orthopädie. Einsatzmöglichkeiten der Lasertechnik bei operativen und diagnostischen Verfahren am Bewegungsapparat. Stuttgart/New York: Thieme; 1991. p. 150–3.

    Google Scholar 

  48. Ascher P, Holzer P, Sutter B, et al. Nucleus-pulposus-Denaturierung bei Bandscheibenprotrusionen. In: Siebert W, editor. Laser in der Orthopädie. Einsatzmöglichkeiten der Lasertechnik bei operativen und diagnostischen Verfahren am Bewegungsapparat. Stuttgart/New York: Thieme; 1991. p. 169–72.

    Google Scholar 

  49. Choi JY, Tanenbaum BS, Milner TE, et al. Thermal, mechanical, optical, and morphologic changes in bovine nucleus pulposus induced by Nd:YAG (lambda = 1.32 microm) laser irradiation. Lasers Surg Med. 2001;28(3):248–54. doi:10.1002/lsm.1046.

    Article  CAS  PubMed  Google Scholar 

  50. Sato M, Ishihara M, Kikuchi M, et al. The influence of Ho:YAG laser irradiation on intervertebral disc cells. Lasers Surg Med. 2011;43(9):921–6.

    Article  PubMed  Google Scholar 

  51. Engelke C, Galanski M, Molen AJ van der, et al. Spiral and multislice computed tomography of the body. 332 tables. Stuttgart [u.a.]: Thieme; 2003.

    Google Scholar 

  52. Gevargez A, Groenemeyer DW, Czerwinski F. CT-guided percutaneous laser disc decompression with Ceralas D, a diode laser with 980-nm wavelength and 200-microm fiber optics. Eur Radiol. 2000;10(8):1239–41.

    Article  CAS  PubMed  Google Scholar 

  53. Chambers RA, Botsford JA, Fanelli E. The PLDD registry. J Clin Laser Med Surg. 1995;13(3):215–9.

    CAS  PubMed  Google Scholar 

  54. Anders JO, Pietsch S, Staupendahl G. Kritische Betrachtung der Indikationen des Holmium. YAG- und des Neodym:YAG-Lasers in der orthopädischen Chirurgie anhand einer In- vitro-Studie.; ÉACritical evaluation of indications for the holmium: YAG laser and the neodymium:YAG laser in orthopedic surgery based on an in vitro studyÉU. Biomedizinische Technik. Biomed Eng. 1999;44(4):83–6.

    Article  CAS  Google Scholar 

  55. Paul M, Hellinger J. Nd:YAG (1064nm) versus Diode (940 nm) PLDN: a prospective randomized blinded study. Spinal Surg Relat Disciplines. 2000:555–8.

    Google Scholar 

  56. Grönemeyer DH, Buschkamp H, Braun M, et al. Image-guided percutaneous laser disk decompression for herniated lumbar disks: a 4-year follow-up in 200 patients. J Clin Laser Med Surg. 2003;21(3):131–8.

    Article  PubMed  Google Scholar 

  57. Steiner P, Zweifel K, Botnar R, et al. MR guidance of laser disc decompression. Preliminary in vivo experience. Eur Radiol. 1998;8(4):592–7.

    Article  CAS  PubMed  Google Scholar 

  58. Botsford JA. Radiological considerations: percutaneous laser disc decompression. J Clin Laser Med Surg. 1993;11(5):223–31.

    CAS  PubMed  Google Scholar 

  59. Botsford JA. Radiological considerations: patient selection for percutaneous laser disc decompression. J Clin Laser Med Surg. 1994;12(5):255–9.

    CAS  PubMed  Google Scholar 

  60. Botsford JA. The role of radiology in percutaneous laser disc decompression. J Clin Laser Med Surg. 1995;13(3):173–86.

    CAS  PubMed  Google Scholar 

  61. Grasshoff H, Kayser R, Mahlfeld U, et al. Diskographiebefund und Ergebnis der perkutanen Laserdiskusdekompression (PLDD) (Diskography findings and results of percutaneous laser disc decompression (PLDD)). RöFo: Fortschritte auf dem Gebiete der Röntgenstrahlen und der Nuklearmedizin. 2001;173(3):191–4. doi:10.1055/s-2001-11600.

    CAS  PubMed  Google Scholar 

  62. Kapoor SG, Huff J, Cohen SP. Systematic review of the incidence of discitis after cervical discography. Spine J. 2010;10(8):739–45. doi:10.1016/j.spinee.2009.12.022.

    Article  PubMed  Google Scholar 

  63. Osti OL, Fraser RD, Vernon-Roberts B. Discitis after discography. The role of prophylactic antibiotics. J Bone Joint Surg. 1990;72(2):271–4.

    CAS  Google Scholar 

  64. Sharma SK, Jones JO, Zeballos PP, et al. The prevention of discitis during discography. Spine J. 2009;9(11):936–43. doi:10.1016/j.spinee.2009.06.001.

    Article  PubMed  Google Scholar 

  65. Choy DS. Clinical experience and results with 389 PLDD procedures with the Nd:YAG laser, 1986 to 1995. J Clin Laser Med Surg. 1995;13(3):209–13.

    CAS  PubMed  Google Scholar 

  66. Hellinger J. Complications of non-endoscopic percutaneous laser disc decompression and nucleotomy with the neodymium: YAG laser 1064 nm. Photomed Laser Surg. 2004;22(5):418–22.

    Article  CAS  PubMed  Google Scholar 

  67. Turgut M, Onol B, Kiliniç K, et al. Extensive damage to the end-plates as a complication of laser discectomy. An experimental study using an animal model. Acta Neurochir. 1997;139(5):404–9; discussion 409–10.

    Article  CAS  PubMed  Google Scholar 

  68. Ewers E (1997) Percutane Nd:YAG Laservaporisation des Nucleus Pulposus. Ergebnisse einer morphologischen Studie. Dissertation, UGH Essen

    Google Scholar 

  69. Kobayashi S, Uchida K, Takeno K, et al. A case of nerve root heat injury induced by percutaneous laser disc decompression performed at an outside institution: technical case report. Neurosurgery. 2007;60(2 Suppl 1):ONSE171-2; discussion ONSE172.

    Google Scholar 

  70. Schweitzer ME, Laredo J, editors. New techniques in interventional musculoskeletal radiology. New York: Informa Healthcare; 2007.

    Google Scholar 

  71. Farrar MJ, Walker A, Cowling P. Possible salmonella osteomyelitis of spine following laser disc decompression. Eur Spine J. 1998;7(6):509–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Singh V, Manchikanti L, Calodney AK, et al. Percutaneous lumbar laser disc decompression. An update of current evidence. Pain Physician. 2013;16(2 Suppl):SE229–60.

    PubMed  Google Scholar 

  73. Kremer J, et al. Bandscheibenbedingte Erkrankungen - Ursachen, Diagnose, Behandlung, Vorbeugung, Begutachtung. 5th ed. Georg Thieme Verlag; 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Klein, R., Sommer, F. (2016). Cervical PLDD (Percutaneous Laser Discectomy). Ten Years Experience. In: Menchetti, P. (eds) Cervical Spine. Springer, Cham. https://doi.org/10.1007/978-3-319-21608-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21608-9_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21607-2

  • Online ISBN: 978-3-319-21608-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics