Skip to main content

Functional Anatomy and Biomechanics of the Cervical Spine

  • Chapter
Cervical Spine

Abstract

The head-neck system consists of seven cervical vertebrae and has a unique anatomy and motion to accommodate the needs of a highly mobile head-torso transitory zone. From a kinematical point of view, this system is very complex. Normally, the spine mainly functions as a coupled unit, and neck kinematics can be analyzed by studying head movement relative to the upper body. Cervical motion in every plane is checked by anatomic restraints that protect the spinal cord and accompanying vascular structures. The head can be regarded as a platform that houses the sensory apparatus for hearing, vision, smell, taste: the cervical spine constitutes a device that support this sensory platform, moving and orientating it in the three-dimensional space. Any disturbance of anatomy and mechanical properties can lead to clinical symptoms. Also age-related changes can modified cervical anatomy and alignment, drastically reducing range of motion [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although not a physiological movement, lateral bending at the C1-C2 joint is assessed by some manipulative proceedings. While C2 superior articular facets slope inferiorly and laterally, C1 lateral translation must be accompanied by ipsilateral side bending. Minimal lateral translation can occur during lateral flexion of the entire cervical spine. Restraints to this motion are the contralateral alar ligament and the impaction of the contralateral lateral mass onto the lateral aspect of the odontoid process.

  2. 2.

    The “pillar view” is a cervical postero-anterior radiographic projection achieved by directing the beams upwards and forwards essentially along the planes of the lower zigoapophysial joints.

References

  1. Panjabi MM, Yue JJ, Dvorak J, et al. Cervical spine kinematics and clinical instability. The cervical spine. 4th ed. Philadelphia: JB Lippincott; 2005. p. 55–78.

    Google Scholar 

  2. Yukawa Y, Kato F, Suda K, et al. Age-related changes in osseous anatomy, alignment, and range of motion of the cervical spine. Part I: radiographic data from over 1200 asymptomatic subjects. Eur Spine J. 2012;21:1492–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Benzel EC. Biomechanics of spine stabilization. Principles and clinical practice. 1st ed. New York: McGraw-Hill Inc; 1995.

    Google Scholar 

  4. Penning L. Functional pathology of the cervical spine. Amsterdam: Experta Medica Foundation; 1968. p. 1–23.

    Google Scholar 

  5. Smith TJ, Fernie GR. Functional biomechanics of the cervical spine. Spine. 1991;16:1197–203.

    Article  CAS  PubMed  Google Scholar 

  6. Menezes AH, Traynelis VC. Anatomy and biomechanics of normal craniovertebral junction (a) and biomechanics of stabilization (b). Childs Nerv Syst. 2008;24:1091–100.

    Article  PubMed  Google Scholar 

  7. Jofe MH, White AA, Panjabi MM. Clinically relevant kinematics of the cervical spine. The cervical spine. 2nd ed. Philadelphia: JB Lippincott; 1989. p. 57–69.

    Google Scholar 

  8. Rhoton Jr AL. The foramen magnum. Neurosurgery. 2000;47:S155–93.

    Article  PubMed  Google Scholar 

  9. Quercioli V. Considerazioni cliniche su di un caso di frattura isolate comminuta simmetrica dello atlante senza lesioni midollari in seguito a caduta sul capo. Il Policlinico. 1908;XV:241–55.

    Google Scholar 

  10. White AA, Johnson RM, Panjabi MM, et al. Biomechanical analysis of clinical stability of the cervical spine. Clin Orthop. 1975;109:85–96.

    Article  PubMed  Google Scholar 

  11. Panjabi MM, Dvorak J, Duranceau J, et al. Three-dimensional movements of the upper cervical spine. Spine. 1988;13:726–30.

    Article  CAS  PubMed  Google Scholar 

  12. Mercer SR, Bogduk N. Joints of the cervical vertebral column. J Orthop Sports Phys Ther. 2001;31:174–82.

    Article  CAS  PubMed  Google Scholar 

  13. Bogduk N, Mercer S. Biomechanics of the cervical spine. Part I: normal kinematics. Clin Biomech (Bristol, Avon). 2000;15:633–48.

    Article  CAS  Google Scholar 

  14. Ghanayem AJ, Paxinos O. Functional anatomy of joints, ligaments and discs. The cervical spine. 4th ed. Philadelphia: JB Lippincott; 2005. p. 46–54.

    Google Scholar 

  15. Penning L. Normal movement in the cervical spine. Am J Roentgenol. 1978;130:317–26.

    Article  CAS  Google Scholar 

  16. Panjabi MM. The stabilizing system of the spine. Part II: neutral zone and instability hypothesis. J Spinal Disord. 1992;5:390–7.

    Article  CAS  PubMed  Google Scholar 

  17. (a) Dvorak J, Panjabi MM, Gerber M et al, CT-functional diagnostics of the rotator instability of the upper cervical spine. Part 1: an experimental study in cadavers. Spine. 1987;12:197–205. (b) Dvorak J, Hayek J, Zehnder R. Part 2: an evaluation on healthy adults and patients with suspected instability. Spine. 1987;12:726–31.

    Google Scholar 

  18. Panjabi MM, Crisco JJ, Vasavada A, et al. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curve. Spine. 2001;26:2692–700.

    Article  CAS  PubMed  Google Scholar 

  19. Mimura M, Moriya H, Watanabe T, et al. Three-dimensional motion analysis of the cervical spine with special reference to the axial rotation. Spine. 1989;14:1135–9.

    Article  CAS  PubMed  Google Scholar 

  20. Takasaki H, Hall T, Oshiro S, et al. Normal kinematics of the upper cervical spine during the flexion-rotation test. In vivo measurements using magnetic resonance imaging. Man Ther. 2011;16:167–71.

    Article  PubMed  Google Scholar 

  21. Werne S. The possibilities of movement in the craniovertebral joints. Acta Orthop Scand. 1958;28:165–73.

    Article  Google Scholar 

  22. Dvorak J, Panjabi MM, Novotny JE, et al. In vivo flexion/extension of the normal cervical spine. J Orthop Res. 1991;9:828–34.

    Article  CAS  PubMed  Google Scholar 

  23. Lind B, Sihlbom H, Nordwall A, et al. Normal ranges of motion of the cervical spine. Arch Phys Med Rehabil. 1989;70:692–5.

    CAS  PubMed  Google Scholar 

  24. Frobin W, Leivseth G, Biggemann M, et al. Sagittal plane motion of the cervical spine. A new precision measurement protocol and normal motion data in healthy adults. Clin Biomech (Bristol, Avon). 2002;17:21–31.

    Article  CAS  Google Scholar 

  25. Penning L. Kinematics of cervical spine injury: a functional radiological hypothesis. Eur Spine J. 1995;4:126–32.

    Article  CAS  PubMed  Google Scholar 

  26. Mestdagh H. Morphological aspects and biomechanical properties of the vertebroaxial joint (C2-C3). Acta Morphol Neerl Scand. 1976;14:19–30.

    CAS  PubMed  Google Scholar 

  27. Nowitzke A, Westaway M, Bogduk N. Cervical zygapophyseal joints: geometrical parameters and relationship to cervical kinematics. Clin Biomech (Bristol, Avon). 1994;9:342–8.

    Article  CAS  Google Scholar 

  28. Penning L, Wilmink JT. Rotation of the cervical spine. A CT study in normal subjects. Spine. 1987;12:732–8.

    Article  CAS  PubMed  Google Scholar 

  29. Mercer S, Bogduk N. The ligaments and anulus fibrosus of human adult cervical intervertebral discs. Spine. 1999;24:619–26.

    Article  CAS  PubMed  Google Scholar 

  30. Lysell E. Motion in the cervical spine: an experimental study on autopsy specimens. Acta Orthop Scand. 1969;123:S41–61.

    Google Scholar 

  31. Amevo B, Aprill C, Bogduk N. Abnormal instantaneous axes of rotation in patients with neck pain. Spine. 1992;17:748–56.

    Article  CAS  PubMed  Google Scholar 

  32. Yoganandan N, Kumaresan S, Pintar FA. Biomechanics of the cervical spine. Part II: cervical spine soft tissue responses and biomechanical modeling. Clin Biomech (Bristol, Avon). 2001;16:1–27.

    Article  CAS  Google Scholar 

  33. Pintar FA, Yoganandan N, Voo LM. Effect of age and loading rate on human cervical spine injury threshold. Spine. 1998;23:1957–62.

    Article  CAS  PubMed  Google Scholar 

  34. Arun MW, Yoganandan N, Stemper BD, et al. Sensitivity and stability analysis of a nonlinear material model of cervical intervertebral disc under cyclic loads using the finite element method. Biomed Sci Instrum. 2014;50:19–30.

    PubMed  Google Scholar 

  35. Dvorak J, Antinnes JA, Panjabi MM, et al. Age and gender related normal motion of the cervical spine. Spine. 1992;17:S393–8.

    Article  CAS  PubMed  Google Scholar 

  36. Feipel V, Rondelet B, Le Pallec J-P, et al. Global motion of the cervical spine: an electrogoniometric study. Clin Biomech (Bristol, Avon). 1999;14:462–70.

    Article  CAS  Google Scholar 

  37. White AA, Panjabi MM. Clinical biomechanics of the spine. 2nd ed. Philadelphia: JB Lippincott; 1990.

    Google Scholar 

  38. Tortora G, Grabowski S. Principles of anatomy and physiology. 9th ed. New York: Wiley; 2000.

    Google Scholar 

  39. Dvorak J, Froehlich D, Penning L, et al. Functional radiographic diagnosis of the cervical spine: flexion/extension. Spine. 1988;13:748–55.

    Article  CAS  PubMed  Google Scholar 

  40. Amevo B, Worth D, Bogduk N. Instantaneous axes of rotation of the typical cervical motion segments: a study in normal volunteers. Clin Biomech (Bristol, Avon). 1991;6:111–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Ramieri MD PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ramieri, A., Domenicucci, M., Miscusi, M., Costanzo, G. (2016). Functional Anatomy and Biomechanics of the Cervical Spine. In: Menchetti, P. (eds) Cervical Spine. Springer, Cham. https://doi.org/10.1007/978-3-319-21608-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21608-9_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21607-2

  • Online ISBN: 978-3-319-21608-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics