Skip to main content

HA-TCP Augmented Cage-Role on Fusion in Cervical Spine

  • Chapter
Cervical Spine

Abstract

Medical application is one of the most exciting and rewarding research areas of the materials science. Examples from our daily life are sutures, catheters, heart valves, pacemakers, breast implants, fracture fixation plates, nails and screws in orthopedics, dental filling materials, orthodontic wires, as well as total joint replacement prostheses. During the past decades, both an ageing population and a democratization of high-risk sports have led to a surge of bone-related diseases and bone fractures, which must be treated through implants. In order to be accepted by the living body, all implantable items must be prepared from a special class of materials, called biomedical materials or biomaterials in short.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vallet-Regí M. Ceramics for medical applications. J Chem Soc Dalton Trans. 2001;2:97–108.

    Article  Google Scholar 

  2. Dorozhkin SV. Calcium orthophosphates in dentistry. J Mater Sci Mater Med. 2013;24:1335–63.

    Article  CAS  PubMed  Google Scholar 

  3. US Bone Grafts Market to Reach US$2.3 billion by 2017, according to new report by Global Industry Analysts, Inc. Available online: http://www.prweb.com/releases/bone_grafts/standard_bone_allografts/prweb8953883.htm. Accessed 3 Sept 2013.

  4. Dorozhkin SV. Calcium orthophosphates: applications in nature, biology, and medicine. Pan Stanford: 8 Temasek Boulevard, Singapore; 2012. p. 850.

    Google Scholar 

  5. Oktar FN, Kesenci K, Pişkin E. Characterization of processed tooth hydroxyapatite for potential biomedical implant applications. Artif Cells Blood Substit Immobil Biotechnol. 1999;27:367–79.

    Article  CAS  PubMed  Google Scholar 

  6. Williams DF. On the nature of biomaterials. Biomaterials. 2009;30:5897–909.

    Article  CAS  PubMed  Google Scholar 

  7. Bongio M, van den Beucken JJJP, Leeuwenburgh SCG, Jansen JA. Development of bone substitute materials: from ‘biocompatible’ to ‘instructive’. J Mater Chem. 2010;20:8747–59.

    Article  CAS  Google Scholar 

  8. Mann S, editor. Biomimetic materials chemistry. Oxford: Wiley-VCH; 1996. p. 400.

    Google Scholar 

  9. Vallet-Regí M. Bioceramics: where do we come from and which are the future expectations. Key Eng Mater. 2008;377:1–18.

    Article  Google Scholar 

  10. Jandt KD. Evolutions, revolutions and trends in biomaterials science—a perspective. Adv Eng Mater. 2007;9:1035–50.

    Article  Google Scholar 

  11. Meyers MA, Chen PY, Lin AYM, Seki Y. Biological materials: structure and mechanical properties. Progr Mater Sci. 2008;53:1–206.

    Article  CAS  Google Scholar 

  12. Ceramics. Available online: http://www.en.wikipedia.org/wiki/Ceramics. Accessed 14 Aug 2013.

  13. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  CAS  Google Scholar 

  14. Cao W, Hench LL. Bioactive materials. Ceram Int. 1996;22:493–507.

    Article  CAS  Google Scholar 

  15. Hench LL. Bioceramics. J Am Ceram Soc. 1998;81:1705–28.

    Article  CAS  Google Scholar 

  16. Hench LL, Day DE, Höland W, Rheinberger VM. Glass and medicine. Int J Appl Glass Sci. 2010;1:104–17.

    Article  CAS  Google Scholar 

  17. Pinchuk ND, Ivanchenko LA. Making calcium phosphate biomaterials. Powder Metall Metal Ceram. 2003;42:357–71.

    Article  CAS  Google Scholar 

  18. Heimann RB. Materials science of crystalline bioceramics: a review of basic properties and applications. CMU J. 2002;1:23–46.

    Google Scholar 

  19. Tomoda K, Ariizumi H, Nakaji T, Makino K. Hydroxyapatite particles as drug carriers for proteins. Colloids Surf B. 2010;76:226–35.

    Article  CAS  Google Scholar 

  20. Zamoume O, Thibault S, Regnié G, Mecherri MO, Fiallo M, Sharrock P. Macroporous calcium phosphate ceramic implants for sustained drug delivery. Mater Sci Eng C. 2011;31:1352–6.

    Article  CAS  Google Scholar 

  21. Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 2012;8:1401–21.

    Article  CAS  PubMed  Google Scholar 

  22. Arcos D, Vallet-Regí M. Bioceramics for drug delivery. Acta Mater. 2013;61:890–911.

    Article  CAS  Google Scholar 

  23. Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20:2287–303.

    Article  CAS  PubMed  Google Scholar 

  24. Dorozhkin SV. Calcium orthophosphates and human beings. A historical perspective from the 1770s until 1940. Biomatter. 2012;2:53–70.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dorozhkin SV. A detailed history of calcium orthophosphates from 1770s till 1950. Mater Sci Eng C. 2013;33:3085–110.

    Article  CAS  Google Scholar 

  26. Vallet-Regí M, González-Calbet JM. Calcium phosphates as substitution of bone tissues. Progr Solid State Chem. 2004;32:1–31.

    Article  Google Scholar 

  27. Taş AC, Korkusuz F, Timuçin M, Akkaş N. An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics. J Mater Sci Mater Med. 1997;8:91–6.

    Google Scholar 

  28. Layrolle P, Ito A, Tateishi T. Sol-gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics. J Am Ceram Soc. 1998;81:1421–8.

    Article  CAS  Google Scholar 

  29. Engin NO, Tas AC. Manufacture of macroporous calcium hydroxyapatite bioceramics. J Eur Ceram Soc. 1999;19:2569–72.

    Article  CAS  Google Scholar 

  30. Ahn ES, Gleason NJ, Nakahira A, Ying JY. Nanostructure processing of hydroxyapatite-based bioceramics. Nano Lett. 2001;1:149–53.

    Article  CAS  Google Scholar 

  31. Khalil KA, Kim SW, Dharmaraj N, Kim KW, Kim HY. Novel mechanism to improve toughness of the hydroxyapatite bioceramics using high-frequency induction heat sintering. J Mater Process Technol. 2007;187–188:417–20.

    Article  Google Scholar 

  32. Laasri S, Taha M, Laghzizil A, Hlil EK, Chevalier J. The affect of densification and dehydroxylation on the mechanical properties of stoichiometric hydroxyapatite bioceramics. Mater Res Bull. 2010;45:1433–7.

    Article  CAS  Google Scholar 

  33. Kitamura M, Ohtsuki C, Ogata S, Kamitakahara M, Tanihara M. Microstructure and bioresorbable properties of α-TCP ceramic porous body fabricated by direct casting method. Mater Trans. 2004;45:983–8.

    Article  CAS  Google Scholar 

  34. Kawagoe D, Ioku K, Fujimori H, Goto S. Transparent β-tricalcium phosphate ceramics prepared by spark plasma sintering. J Ceram Soc Jpn. 2004;112:462–3.

    Article  CAS  Google Scholar 

  35. Wang CX, Zhou X, Wang M. Influence of sintering temperatures on hardness and Young’s modulus of tricalcium phosphate bioceramic by nanoindentation technique. Mater Charact. 2004;52:301–7.

    Article  CAS  Google Scholar 

  36. Ioku K, Kawachi G, Nakahara K, Ishida EH, Minagi H, Okuda T, Yonezawa I, Kurosawa H, Ikeda T. Porous granules of β-tricalcium phosphate composed of rod-shaped particles. Key Eng Mater. 2006;309–311:1059–62.

    Article  Google Scholar 

  37. Kamitakahara M, Ohtsuki C, Miyazaki T. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J Biomater Appl. 2008;23:197–212.

    Article  CAS  PubMed  Google Scholar 

  38. Vorndran E, Klarner M, Klammert U, Grover LM, Patel S, Barralet JE, Gbureck U. 3D powder printing of β-tricalcium phosphate ceramics using different strategies. Adv Eng Mater. 2008;10:B67–71.

    Article  CAS  Google Scholar 

  39. Descamps M, Duhoo T, Monchau F, Lu J, Hardouin P, Hornez JC, Leriche A. Manufacture of macroporous β-tricalcium phosphate bioceramics. J Eur Ceram Soc. 2008;28:149–57.

    Article  CAS  Google Scholar 

  40. Liu Y, Kim JH, Young D, Kim S, Nishimoto SK, Yang Y. Novel template-casting technique for fabricating β-tricalcium phosphate scaffolds with high interconnectivity and mechanical strength and in vitro cell responses. J Biomed Mater Res A. 2010;92:997–1006.

    PubMed  Google Scholar 

  41. Carrodeguas RG, de Aza S. α-tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater. 2011;7:3536–46.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Kong D, Feng X. Fabrication and properties of porous β-tricalcium phosphate ceramics prepared using a double slip-casting method using slips with different viscosities. Ceram Int. 2012;38:2991–6.

    Article  CAS  Google Scholar 

  43. Tancret F, Bouler JM, Chamousset J, Minois LM. Modelling the mechanical properties of microporous and macroporous biphasic calcium phosphate bioceramics. J Eur Ceram Soc. 2006;26:3647–56.

    Article  CAS  Google Scholar 

  44. Bouler JM, Trecant M, Delecrin J, Royer J, Passuti N, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of five synthesis parameters on compressive strength. J Biomed Mater Res. 1996;32:603–9.

    Article  CAS  PubMed  Google Scholar 

  45. Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 1998;19:133–9.

    Article  CAS  PubMed  Google Scholar 

  46. Daculsi G. Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials. 1998;19:1473–8.

    Article  CAS  PubMed  Google Scholar 

  47. Williams DF. The williams dictionary of biomaterials. Liverpool: Liverpool University Press; 1999. p. 368.

    Google Scholar 

  48. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2000;395:81–98.

    Article  Google Scholar 

  49. Rey C, Combes C, Drouet C, Somrani S. Tricalcium phosphate-based ceramics. In: Kokubo T, editor. Bioceramics and their clinical applications. Cambridge: Woodhead Publishing in Materials; 2008. p. 326–66.

    Chapter  Google Scholar 

  50. Ahato I. Reverse engineering the ceramic art of algae. Science. 1999;286:1059–61.

    Google Scholar 

  51. Popişter F, Popescu D, Hurgoiu D. A new method for using reverse engineering in case of ceramic tiles. Qual Access Success. 2012;13:409–12.

    Google Scholar 

  52. Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 2002;8:1–11.

    Article  CAS  PubMed  Google Scholar 

  53. Yeong WY, Chua CK, Leong KF, Chandrasekaran M. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 2004;22:643–52.

    Article  CAS  PubMed  Google Scholar 

  54. Hieu LC, Zlatov N, Sloten JV, Bohez E, Khanh L, Binh PH, Oris P, Toshev Y. Medical rapid prototyping applications and methods. Assem Autom. 2005;25:284–92.

    Article  Google Scholar 

  55. Eufinger H, Wehniöller M, Machtens E, Heuser L, Harders A, Kruse D. Reconstruction of craniofacial bone defects with individual alloplastic implants based on CAD/CAM-manipulated CT-data. J Cranio Maxillofac Surg. 1995;23:175–81.

    Article  CAS  Google Scholar 

  56. Klein M, Glatzer C. Individual CAD/CAM fabricated glass-bioceramic implants in reconstructive surgery of the bony orbital floor. Plast Reconstruct Surg. 2006;117:565–70.

    Article  CAS  Google Scholar 

  57. Yin L, Song XF, Song YL, Huang T, Li J. An overview of in vitro abrasive finishing & CAD/CAM of bioceramics in restorative dentistry. Int J Mach Tools Manuf. 2006;46:1013–26.

    Article  Google Scholar 

  58. Li J, Hsu Y, Luo E, Khadka A, Hu J. Computer-aided design and manufacturing and rapid prototyped nanoscale hydroxyapatite/polyamide (n-HA/PA) construction for condylar defect caused by mandibular angle ostectomy. Aesthet Plast Surg. 2011;35:636–40.

    Article  CAS  Google Scholar 

  59. Kokubo T, editor. Bioceramics and their clinical applications. Cambridge: Woodhead Publishing; 2008. p. 784.

    Google Scholar 

  60. Oktar FN, Genc Y, Goller G, Erkmen EZ, Ozyegin LS, Toykan D, Demirkiran H, Haybat H. Sintering of synthetic hydroxyapatite compacts. Key Eng Mater. 2004;2087–2090:264–8.

    Google Scholar 

  61. Monroe EA, Votava W, Bass DB, McMullen J. New calcium phosphate ceramic material for bone and tooth implants. J Dent Res. 1971;50:860–1.

    Article  CAS  PubMed  Google Scholar 

  62. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res. 1981;157:259–78.

    CAS  PubMed  Google Scholar 

  63. Yuan H, De Bruijn JD, Li Y, Feng J, Yang Z, De Groot K, Zhang X. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous alpha-TCP and beta-TCP. J Mater Sci Mater Med. 2001;12(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  64. Yuan H, van Blitterswijk CA, de Groot K, de Bruijn JD. Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds. Tissue Eng. 2006;12(6):1607–15.

    Article  CAS  PubMed  Google Scholar 

  65. Wilson CE, Kruyt MC, de Bruijn JD, van Blitterswijk CA, Oner FC, Verbout AJ, Dhert WJ. A new in vivo screening model for posterior spinal bone formation: comparison of ten calcium phosphate ceramic material treatments. Biomaterials. 2006;27(3):302–14.

    Article  CAS  PubMed  Google Scholar 

  66. Habibovic P, Yuan H, van der Valk CM, Meijer G, van Blitterswijk CA, de Groot K. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials. 2005;26(17):3565–75.

    Article  CAS  PubMed  Google Scholar 

  67. Takadama H, Kokubo T. vitro evaluation of bone bioactivity. In: Kokubo T, editor. Bioceramics and their clinical applications. Cambridge: Woodhead Publishing in Materials; 2008. p. 165–82.

    Chapter  Google Scholar 

  68. Eidelman N, Chow LC, Brown WE. Calcium phosphate saturation levels in ultrafiltered serum. Calcif Tissue Int. 1987;40(2):71–8.

    Article  CAS  PubMed  Google Scholar 

  69. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1972;2:177–41.

    Google Scholar 

  70. Duan YR, Zhang ZR, Wang CY, Chen JY, Zhang XD. Dynamic study of calcium phosphate formation on porous HA/TCP ceramics. J Mater Sci Mater Med. 2004;15(11):1205–11.

    Article  CAS  PubMed  Google Scholar 

  71. Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaitre J, Proust JP. The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res. 2002;63:408–12.

    Article  CAS  PubMed  Google Scholar 

  72. Wang H, Lee JK, Moursi A, Lannutti JJ. Ca/P ratio effects on the degradation of hydroxyapatite in vitro. J Biomed Mater Res A. 2003;67:599–608.

    Article  PubMed  Google Scholar 

  73. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289:1504–8.

    Article  CAS  PubMed  Google Scholar 

  74. Bertazzo S, Zambuzzi WF, Campos DDP, Ogeda TL, Ferreira CV, Bertran CA. Colloids Surf B. 2010;78:177–84.

    Article  CAS  Google Scholar 

  75. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002;395:81–98.

    Article  PubMed  Google Scholar 

  76. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.

    Article  CAS  PubMed  Google Scholar 

  77. Klenke FM, Liu Y, Yuan H, Hunziker EB, Siebenrock KA, Hofstetter W. Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo. J Biomed Mater Res A. 2008;85(3):777–86.

    Article  PubMed  Google Scholar 

  78. Zhu XD, Fan HS, Xiao YM, Li DX, Zhang HJ, Luxbacher T, Zhang X D. Effect of surface structure on protein adsorption to biphasic calcium-phosphate ceramics in vitro and in vivo. Acta Biomater. 2009;5(4):1311–18.

    Google Scholar 

  79. Mobbs RJ, Chau AM, Durmush D. Biphasic calcium phosphate contained within a polyetheretherketone cage with and without plating for anterior cervical discectomy and fusion. Orthop surg. 2012;4(3):156–65.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giles G. Dubois MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dubois, G.G., Lerch, A. (2016). HA-TCP Augmented Cage-Role on Fusion in Cervical Spine. In: Menchetti, P. (eds) Cervical Spine. Springer, Cham. https://doi.org/10.1007/978-3-319-21608-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21608-9_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21607-2

  • Online ISBN: 978-3-319-21608-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics