Skip to main content

Biomechanical Engineering in Choice of Different Stiffness Material

  • Chapter
Book cover Cervical Spine
  • 2149 Accesses

Abstract

It is generally believed that the modulus of elasticity is a major criterion to anticipate the success of an implant material. Often, this elasticity is only partially addressed, since the geometrical data are omitted. For axial and bending stiffness the cross section’s area and area moment of inertia must also be taken into consideration. An additional criterion in respect to the bony anchorage of vertebral cages is being presented, which is the induced lateral strain εq = ν · ε. This strain must be sufficiently similar in order to prevent detrimental micromotion. A unique and ideal material stiffness out of the available biomaterials cannot be formulated. But a set of additional criteria for a successful bony anchorage can be listed, such as friction behavior at the interface or material with a potential for stimulating bone ingrowth. The evaluation of stiffness cannot avoid the necessity to carry out numerical analysis, experimental tests with preferably human specimen or careful clinical observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang H, et al. Micromechanics of the human vertebral body for forward flexion. J Biomech. 2012;45(12):2142–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ferguson S, Steffen T. Biomechanics of the aging spine. Eur Spine J. 2003;12 Suppl 2:S97–103.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Currey J. The mechanical adaptations of bones. Princeton: Princeton University Press; 1984.

    Book  Google Scholar 

  4. White AA, Panjabi MM. Clinical biomechanics of the spine. Philadelphia: J.B. Lippincott Company; 1990.

    Google Scholar 

  5. Thaler M, et al. Footprint mismatch in total cervical disc arthroplasty. Eur Spine J. 2013;22:759–65.

    Article  PubMed  Google Scholar 

  6. Banse X, Sims TJ, Bailey AJ. Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res. 2002;17(9):1621–8.

    Article  CAS  PubMed  Google Scholar 

  7. Grob D. A comparison of outcomes of cervical disc arthroplasty and fusion in everyday clinical practice: surgical and methodological aspects. Eur Spine J. 2010;19:297–306.

    Article  PubMed  Google Scholar 

  8. Nabhan A. Assessment of adjacent-segment mobility after cervical disc replacement versus fusion: RCT with 1 year’s results. Eur Spine J. 2011;20:934–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wolff J. Das Gesetz der Transformation der Knochen. Hirschwald; Berlin; 1892. Translated by Maquet P, Furlong R. The Law of Bone Remodelling. Springer: Berlin/Heidelberg; 1986.

    Google Scholar 

  10. Carter DR, et al. Relationships between loading history and femoral cancellous bone architecture. J Biomechanics. 1989;22(3):231–44.

    Article  CAS  Google Scholar 

  11. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic and spinal implants. J Biomaterials. 2007;28(32):4845–69.

    Article  CAS  Google Scholar 

  12. http://www.aerospacemetals.com/titanium-ti-6al-4v-ams-4911.html

  13. Petersen RC. Bisphenil-polymer/carbon-fiber-reinforced composite compared to titanium alloy bone implant. Int J Polym Sci. 2011;2011, Article ID 168924, 11 pages.

    Google Scholar 

  14. Datasheet Bionate® (2009) by DSM PTG, 2810 7th Street, Berkeley, CA 94710

    Google Scholar 

  15. Datasheet Carbosil® (2009) by DSM PTG, 2810 7th Street, Berkeley, CA 94710

    Google Scholar 

  16. Martínez-Vázquez FJ, et al. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomater. 2010;6:4361–8.

    Article  PubMed  Google Scholar 

  17. Polikeit A, et al. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J. 2003;12:413–20.

    Article  PubMed  Google Scholar 

Download references

® Bionate and Carbosil are trademarks of DSM PTG

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Freudiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Freudiger, S. (2016). Biomechanical Engineering in Choice of Different Stiffness Material. In: Menchetti, P. (eds) Cervical Spine. Springer, Cham. https://doi.org/10.1007/978-3-319-21608-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21608-9_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21607-2

  • Online ISBN: 978-3-319-21608-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics