Skip to main content

Role of Materials in Cervical Spine Fusion

  • Chapter

Abstract

Spondylosis is the most common cause of neural dysfunction in the cervical spine. The degenerative changes of ageing typically herniated disc, osteophyte formation and hypertrophied ligament may compress the spinal cord to present symptomatically as neck pain, radiculopathy, myelopathy or radiculo-myelopathy [1]. Anterior cervical discectomy or multilevel somatectomies with fusion are common surgical procedures for patients suffering pain and/or neurological deficits and unresponsive to conservative management [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Whitecloud 3rd TS. Modern alternatives and techniques for one-level discectomy and fusion. Clin Orthop Relat Res. 1999;359:67–76.

    Article  PubMed  Google Scholar 

  2. Wigfield CC, Nelson RJ. Non-autologous interbody fusion materials in cervical spine surgery: how strong is the evidence to justify their use? Spine. 2001;26:687–94.

    Article  CAS  PubMed  Google Scholar 

  3. Robinson RA, et al. The results of anterior interbody fusion of the cervical spine. J Bone Joint Surg Am. 1962;44:1569–87.

    Google Scholar 

  4. Cloward RB. The anterior approach for ruptured cervical discs. J Neurosurg. 1958;15:602–17.

    Article  CAS  PubMed  Google Scholar 

  5. Bailey RW, Badgley CE. Stabilization of the cervical spine by anterior fusion. J Bone Joint Surg Am. 1960;42:565–94.

    PubMed  Google Scholar 

  6. Simmons EH, Bhalla SK. Anterior cervical discectomy and fusion: a clinical and biomechanical study with eight years follow-up. J Bone Joint Surg Br. 1969;51:225–37.

    CAS  PubMed  Google Scholar 

  7. Bohlman HH, et al. Robinson anterior cervical discectomy and arthrodesis for cervical radiculopathy: long-term follow-up of one hundred and twenty-two patients. J Bone Joint Surg. 1993;75:1298–307.

    CAS  PubMed  Google Scholar 

  8. Bose B. Anterior cervical instrumentation enhances fusion rates in multilevel reconstruction in smokers. J Spinal Disord. 2001;14:3–9.

    Article  CAS  PubMed  Google Scholar 

  9. Bose B. Anterior cervical fusion using Caspar plating. Analysis of results and review of the literature. Surg Neurol. 1998;49:25–31.

    Article  CAS  PubMed  Google Scholar 

  10. Kaiser MG, et al. Anterior cervical plating enhances arthrodesis after discectomy and fusion with cortical allograft. Neurosurgery. 2002;25:229–35.

    Google Scholar 

  11. Sampath P, et al. Outcome of patients treated for cervical myelopathy: a prospective, multicenter study with independent clinical review. Spine. 2000;25:670–6.

    Article  CAS  PubMed  Google Scholar 

  12. Sampath P, et al. Outcome in patients with cervical radiculopathy: prospective, multicenter study with independent clinical review. Spine. 1999;24:591–7.

    Article  CAS  PubMed  Google Scholar 

  13. Emery SE, et al. Three-level anterior cervical discectomy and fusion. Spine. 1997;22:2622–5.

    Article  CAS  PubMed  Google Scholar 

  14. Zdeblick TA, Ducker TB. The use of freeze-dried allograft bone for anterior cervical fusions. Spine. 1991;16:726–9.

    Article  CAS  PubMed  Google Scholar 

  15. Zdeblick T, et al. Anterior cervical discectomy, fusion, and plating. Spine. 1991;18:1974–83.

    Article  Google Scholar 

  16. Schneeberger AG, et al. Anterior cervical interbody fusion with plate fixation for chronic sponylotic radiculopathy: a 2- to 8-year follow-up. J Spinal Disord. 1999;12:215–20.

    CAS  PubMed  Google Scholar 

  17. Katsuura A, et al. Anterior cervical plate used in degenerative disease can maintain lordosis. J Spinal Disord. 1996;9:470–6.

    Article  CAS  PubMed  Google Scholar 

  18. Shapiro S. Banked fibula and the locking anterior cervical plate in anterior cervical fusions following cervical discectomy. J Neurosurg. 1996;84:161–5.

    Article  CAS  PubMed  Google Scholar 

  19. Shapiro S, et al. Cadaveric fibula, locking plate, and allogenic bone matrix for anterior cervical fusion after cervical discectomy for radiculopathy or myelopathy. J Neurosurg (Spine 1). 2001;95:43–50.

    Article  CAS  Google Scholar 

  20. Coric D, et al. Revision of anterior cervical pseudoarthrosis with anterior allograft fusion and plating. J Neurosurg. 1997;86:969–74.

    Article  CAS  PubMed  Google Scholar 

  21. Kostuik JP, et al. Anterior cervical plate fixation with the titanium hollow screw plate system. Spine. 1993;18:1273–8.

    Article  CAS  PubMed  Google Scholar 

  22. Profeta G, et al. Preliminary experience with anterior cervical microdiscectomy and interbody titanium cage fusion (Novus CT-T1) in patients with cervical disc disease. Surg Neurol. 2000;53:417–26.

    Article  CAS  PubMed  Google Scholar 

  23. Eleraky M, et al. Cervical corpectomy: report of 185 cases and review of literature. J Neurosurg (Spine 1). 1999;90:35–41.

    Article  CAS  Google Scholar 

  24. Geyer T, Foy MA. Oral extrusion of a screw after anterior cervical spine plating. Spine. 2001;26:1814–6.

    Article  CAS  PubMed  Google Scholar 

  25. Hanci M, et al. Esophageal perforation subsequent to anterior cervical spine screw/plate fixation. Paraplegia. 1995;33:606–9.

    Article  CAS  PubMed  Google Scholar 

  26. Anderson DG, Albert TJ. Bone grafting, implants, and plating options for anterior cervical fusions. Orthop Clin North Am. 2002;33:317–28.

    Article  PubMed  Google Scholar 

  27. Malloy KM, Hilibrand AS. Autograft versus allograft in degenerative cervical disease. Clin Orthop Relat Res. 2002;394:27–38.

    Article  PubMed  Google Scholar 

  28. Zdeblick TA, Phillips FM. Interbody cage devices. Spine. 2003;28:S2–7, Review.

    PubMed  Google Scholar 

  29. Romner B, et al. Modified Robinson-Smith procedure for the treatment of cervical radiculopathy. Acta Neurol Scand. 1994;90:197–200.

    Article  CAS  PubMed  Google Scholar 

  30. Adams D, Williams DF. The response of bone to carbon–carbon composites. Biomaterials. 1984;5:59–64.

    Article  CAS  PubMed  Google Scholar 

  31. Brandwood A, et al. Phagocytosis of carbon particles by macrophages in vitro. Biomaterials. 1992;13:646–8.

    Article  CAS  PubMed  Google Scholar 

  32. Tullberg T. Failure of a carbon fiber implant. A case report. Spine. 1998;23:1804–6.

    Article  CAS  PubMed  Google Scholar 

  33. Podoshin L, et al. Long-term histologic study of a new carbon–carbon ossicular replacement prosthesis. Am J Otol. 1988;9:366–75.

    CAS  PubMed  Google Scholar 

  34. Cho DY, et al. Treatment of multilevel cervicalfusion with cages. Surg Neurol. 2004;62:378–85.

    Article  PubMed  Google Scholar 

  35. Cho D, et al. Preliminary experience using a polyetheretherketone (PEEK) cage in the treatment of cervical disc disease. Neurosurgery. 2002;51:1–8.

    Google Scholar 

  36. Williams A, et al. Potential of Polyetheretherketone and Carbon-fiber-reinforced PEEK in medical application. J Mater Sci Lett. 1987;6:188–90.

    Article  CAS  Google Scholar 

  37. Wright IP, Eisenstein SM. Anterior cervical discectomy and fusion without instrumentation. Spine. 2007;32:772–4.

    Article  PubMed  Google Scholar 

  38. Fernyhough JC, et al. Fusion rates in multilevel cervical spondylosis comparing allograft fibula with autograft fibula in 126 patients. Spine. 1991;16:S561–4.

    Article  CAS  PubMed  Google Scholar 

  39. Bishop RC, et al. Anterior cervical interbody fusion using autogeneic and allogeneic bone graft substrate: a prospective comparative analysis. J Neurosurg. 1996;85:206–10.

    Article  CAS  PubMed  Google Scholar 

  40. Samartzis D, et al. Is autograft the gold standard in achieving radiographic fusion in one-level anterior cervical discectomy and fusion with rigid anterior plate fixation. Spine. 2005;30:1756–61.

    Article  PubMed  Google Scholar 

  41. Silber JS, et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine. 2003;28:134–9.

    Article  PubMed  Google Scholar 

  42. Schnee CL, et al. Analysis of harvest morbidity and radiographic outcome using autograft for anterior cervical fusion. Spine. 1997;22:2222–7.

    Article  CAS  PubMed  Google Scholar 

  43. Seiler 3rd JG, Johnson J. Iliac crest autogenous bone grafting: donor site complications. J South Orthop Assoc. 2000;9:91–7.

    PubMed  Google Scholar 

  44. Rawlinson JN. Morbidity after anterior cervical decompression and fusion. The influence of the donor site on recovery, and the results of a trial of surgibone compared to autologous bone. Acta Neurochir (Wien). 1994;131:106–18.

    Article  CAS  Google Scholar 

  45. Epstein NE, Hollingsworth R. Does donor site reconstruction following anterior cervical surgery diminish postoperative pain? J Spinal Disord Tech. 2003;16:20–6.

    Article  PubMed  Google Scholar 

  46. McGuire RA, St JK. Comparison of anterior cervical fusions using autogenous bone graft obtained from the cervical vertebrae to the modified Smith-Robinson technique. J Spinal Disord. 1994;7:499–503.

    CAS  PubMed  Google Scholar 

  47. Tubbs RS, et al. Use of the clavicle in anterior cervical discectomy/corpectomy fusion procedures: cadaveric feasibility study. Childs Nerv Syst. 2008;24:337–41.

    Article  PubMed  Google Scholar 

  48. Peelle MW, et al. A novel source of cancellous autograft for ACDF surgery: the manubrium. J Spinal Disord Tech. 2007;20:36–41.

    Article  PubMed  Google Scholar 

  49. Bojescul JA, et al. Backfill for iliac-crest donor sites: a prospective, randomized study of coralline hydroxyapatite. Am J Orthop. 2005;34:377–82.

    PubMed  Google Scholar 

  50. Resnick DK. Reconstruction of anterior iliac crest after bone graft harvest decreases pain: a randomized, controlled clinical trial. Neurosurgery. 2005;57:526–9.

    Article  PubMed  Google Scholar 

  51. Hamer AJ, et al. Biomechanical properties of cortical allograft bone using a new method of bone strength measurement: a comparison of fresh, fresh-frozen, and irradiated bone. J Bone Joint Surg Br. 1996;78:363–8.

    CAS  PubMed  Google Scholar 

  52. Sandhu HS, et al. Bone grafting for spine fusion. Orthop Clin North Am. 1999;30:685–98.

    Article  CAS  PubMed  Google Scholar 

  53. Stevenson S, et al. Factors affecting bone graft incorporation. Clin Orthop. 1996;324:66–74.

    Article  PubMed  Google Scholar 

  54. Stevenson S, Horowitz M. The response to bone allografts. J Bone Joint Surg Am. 1992;74:939–50.

    CAS  PubMed  Google Scholar 

  55. Stevenson S, et al. The fate of cancellous and cortical bone after transplantation of fresh and frozen tissue-antigen-matched and mismatched osteochondral allografts in dogs. J Bone Joint Surg Am. 1991;73:1143–56.

    CAS  PubMed  Google Scholar 

  56. Strong DM, et al. Immunologic responses in human recipients of osseous and osteochondral allografts. Clin Orthop. 1996;326:107–14.

    Article  PubMed  Google Scholar 

  57. Tomford WW. Transmission of disease through transplantation of musculoskeletal allografts. J Bone Joint Surg Am. 1995;77:1742–54.

    CAS  PubMed  Google Scholar 

  58. Asselmeier MA, et al. A review of allograft processing and sterilization techniques and their role in transmission of the human immunodeficiency virus. Am J Sports Med. 1993;21:170–5.

    Article  CAS  PubMed  Google Scholar 

  59. Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop. 2000;371:10–27.

    Article  PubMed  Google Scholar 

  60. Enneking WF, Mindell ER. Observations on massive retrieved human allografts. J Bone Joint Surg Am. 1991;73:1123–42.

    CAS  PubMed  Google Scholar 

  61. Burchardt H. The biology of bone graft repair. Clin Orthop. 1983;174:28–42.

    PubMed  Google Scholar 

  62. Butterman GR, et al. The use of bone allografts in the spine. Clin Orthop. 1996;324:75–85.

    Article  Google Scholar 

  63. Buttermann GR, et al. Revision of failed lumbar fusions. A comparison of anterior autograft and allograft. Spine. 1997;22:2748–55.

    Article  CAS  PubMed  Google Scholar 

  64. Smith G, Robinson RA. The treatment of certain cervical spine disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Joint Surg Am. 1958;40:607–24.

    PubMed  Google Scholar 

  65. Hanley EN, et al. The use of allograft bone in cervical spine surgery. Semin Spine Surg. 1989;1:262–70.

    Google Scholar 

  66. Zdeblick TA. A prospective randomized study of lumbar fusion: preliminary results. Spine. 1993;18:983–91.

    Article  CAS  PubMed  Google Scholar 

  67. An HS, et al. Prospective comparison of autograft vs allograft for adult posterolateral lumbar spine fusion: differences among freezedried, frozen, and mixed grafts. J Spinal Disord. 1995;8:131–5.

    Article  CAS  PubMed  Google Scholar 

  68. Jorgenson SS, et al. A prospective analysis of autograft versus allograft in posterolateral lumbar fusion in the same patient. A minimum of 1-year follow-up in 144 patients. Spine. 1994;19:2048–53.

    Article  CAS  PubMed  Google Scholar 

  69. Constantino PD, Freidman CD. Synthetic bone graft substitutes. Otolaryngol Clin North Am. 1994;27:1037–73.

    Google Scholar 

  70. Cypher T, Grossman JP. Biological principles of bone graft healing. J Foot Ankle Surg. 1996;35:413–7.

    Article  CAS  PubMed  Google Scholar 

  71. Hollinger JO, Battistone GC. Biodegradable bone repair materials. Clin Orthop. 1986;207:290–305.

    CAS  PubMed  Google Scholar 

  72. Albee FH, Morrison HF. Studies in bone growth, triple calcium phosphate as a stimulus to osteogenesis. Ann Surg. 1920;71:32–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop. 1981;157:259–78.

    CAS  PubMed  Google Scholar 

  74. Geesink RGT, De Groot K. Bonding of bone to apatite coated implants. J Bone Joint Surg Br. 1988;70:“17–22.

    CAS  PubMed  Google Scholar 

  75. Byrd HS, Hobar PC. Augmentation of craniofacial skeleton with porous hyroxyapatite granules. Reconstr Surg. 1993;91:15–22.

    Article  CAS  Google Scholar 

  76. Hollinger JO, Brekke J. Role of bone substitutes. Clin Orthop. 1996;324:55–65.

    Article  PubMed  Google Scholar 

  77. Bizette C, et al. Résultats d’arthrodèses intersomatiques cervicales par greffons coralliens. Neurochirurgie. 1999;45:4–14.

    CAS  PubMed  Google Scholar 

  78. Cook SD, et al. In vivo evaluation of anterior cervical fusions with hydroxylapatite graft material. Spine. 1994;19:1856–66.

    Article  CAS  PubMed  Google Scholar 

  79. Eggli PS, et al. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop. 1988;232:127–38.

    CAS  PubMed  Google Scholar 

  80. Kim P, et al. Bisegmental cervical interbody fusion using hydroxyapatite implants: surgical results and long-term observation in 70 cases. J Neurosurg. 1998;88:21–7.

    Article  CAS  PubMed  Google Scholar 

  81. Koyama T, Handa J. Porous hydroxyapatite ceramics for use in neurosurgical practice. Surg Neurol. 1986;25:71–3.

    Article  CAS  PubMed  Google Scholar 

  82. Senter HJ, et al. Anterior cervical discectomy with hydroxyapatite fusion. Neurosurgery. 1989;25:39–43.

    Article  CAS  PubMed  Google Scholar 

  83. Böker DK, et al. Anterior cervical discectomy and vertebral interbody fusion with hydroxyapatite ceramic. Preliminary results. Acta Neurochir. 1993;121:191–5.

    Article  PubMed  Google Scholar 

  84. Roy DM, Linnehan SK. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature. 1974;247:220–8.

    Article  CAS  PubMed  Google Scholar 

  85. Holmes R, et al. A coralline hydroxyapatite bone graft substitute. Clin Orthop. 1984;188:252–62.

    CAS  PubMed  Google Scholar 

  86. Zdeblick TA, et al. Anterior cervical discectomy and fusion using a porous hydroxyapatite bone graft substitute. Spine. 1994;19:2348–57.

    Article  CAS  PubMed  Google Scholar 

  87. Thalgott JS, et al. Anterior interbody fusion of the cervical spine with coralline hydroxyapatite. Spine. 1999;24:1295–9.

    Article  CAS  PubMed  Google Scholar 

  88. Wittenberg RH, et al. Compressive strength of autologous and allogenous bone grafts for thoracolumbar and cervical spine fusion. Spine. 1990;15:1073–8.

    Article  CAS  PubMed  Google Scholar 

  89. Schulte M, et al. Vertebral body replacement with a bioglass–polyurethane composite in spine metastases: Clinical, radiological and biomechanical results. Eur Spine J. 2000;9:437–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gross V, Brandes J. The ultrastructure of the interface between a glass ceramic and bone. J Biomed Mater Res. 1981;15:291–305.

    Article  CAS  PubMed  Google Scholar 

  91. Kinnunen I, et al. Reconstruction of orbital floor fractures using bioactive glass. J Craniomaxillofac Surg. 2000;28:229–34.

    Article  CAS  PubMed  Google Scholar 

  92. Peltola M, et al. Experimental follow-up model for clinical frontal sinus obliteration with bioactive glass. Acta Otolaryngol Suppl. 2000;543:167–9.

    Article  CAS  PubMed  Google Scholar 

  93. Cao W, Hench LL. Bioactive materials. Ceramics Int. 1996;22:493–507.

    Article  CAS  Google Scholar 

  94. Urist MR. Bone: formation by autoinduction. Science. 1965;150:893–9.

    Article  CAS  PubMed  Google Scholar 

  95. Boden SD, et al. The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine. 2000;25:376–81.

    Article  CAS  PubMed  Google Scholar 

  96. Burkus JK, et al. Is INFUSE bone graft superior to autograft bone? An integrated analysis of clinical trials using the LT-CAGE lumbar tapered fusion device. J Spinal Disord Tech. 2003;16:113–22.

    Article  PubMed  Google Scholar 

  97. Zdeblick TA, et al. Cervical interbody fusion cages. An animal model with and without bone morphogenetic protein. Spine. 1998;23:758–65.

    Article  CAS  PubMed  Google Scholar 

  98. Baskin DS, et al. A prospective, randomized, controlled cervical fusion study using recombinant human bone morphogenetic protein-2 with the CORNERSTONE-SR allograft ring and the ATLANTIS anterior cervical plate. Spine. 2003;28:1219–24.

    PubMed  Google Scholar 

  99. Boakye M, et al. Anterior cervical discectomy and fusion involving a polyetheretherketone spacer and bone morphogenetic protein. J Neurosurg Spine. 2005;2:521–5.

    Article  PubMed  Google Scholar 

  100. Smucker JD, et al. Increased swelling complications associated with off-label usage of rhBMP-2 in the anterior cervical spine. Spine. 2006;31:2813–9.

    Article  PubMed  Google Scholar 

  101. Shields LBE, et al. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine. 2006;31:542–7.

    Article  PubMed  Google Scholar 

  102. Tumialan LM, et al. The safety and efficacy of anterior cervical discectomy and fusion with polyetheretherketone spacer and recombinant human bone morphogenetic protein-2: a review of 200 patients. J Neurosurg Spine. 2008;8:529–35.

    Article  PubMed  Google Scholar 

  103. Dickerman RD, et al. rh-BMP-2 can be used safely in the cervical spine: dose and containment are the keys! Spine J Off J N Am Spine Soc. 2007;7:508–9 comment.

    Article  Google Scholar 

  104. Lanman TH, Hopkins TJ. Early findings in a pilot study of anterior cervical interbody fusion in which recombinant human bone morphogenetic protein-2 was used with poly (Llactide-co-D, L-lactide) bioabsorbable implants. Neurosurg Focus. 2004;16, E6.

    PubMed  Google Scholar 

  105. Vaidya R, et al. Complications of anterior cervical discectomy and fusion using recombinant human bone morphogenetic protein-2. Eur Spine J. 2007;16:1257–65.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Vaidya R, et al. Interbody fusion with allograft and rhBMP-2 leads to consistent fusion but early subsidence. J Bone Joint Surg Br. 2007;89:342–5.

    Article  CAS  PubMed  Google Scholar 

  107. Buttermann GR. Prospective nonrandomized comparison of an allograft with bone morphogenic protein versus an iliaccrest autograft in anterior cervical discectomy and fusion. Spine J Off J N Am Spine Soc. 2008;8:426–35.

    Article  Google Scholar 

  108. Papavero L, et al. A composite bone graft substitute for anterior cervical fusion. Spine. 2002;27:1037–43.

    Article  PubMed  Google Scholar 

  109. Muschler GF et al. Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res. 2005;432:242–51.

    Google Scholar 

  110. Khoueir P, et al. Multilevel anterior cervical fusion using a collagen-hydroxyapatite matrix with iliac crest bone marrow aspirate: an 18-month follow-up study. Neurosurgery. 2007;61:963–71.

    Article  PubMed  Google Scholar 

  111. Attawia M et al. Toward an International Tissue Engineering Curriculum: The Drexel Initiative (2002). In: Laurencin CT, editor. Bone graft substitutes. West Conshohocken: ASTM International; 2003. p. 126–41.

    Google Scholar 

  112. Feiz-Erfan I, et al. Effect of autologous platelet gel on early and late graft fusion in anterior cervical spine surgery. J Neurosurg Spine. 2007;7:496–502.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Gallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Doria, C., Gallo, M. (2016). Role of Materials in Cervical Spine Fusion. In: Menchetti, P. (eds) Cervical Spine. Springer, Cham. https://doi.org/10.1007/978-3-319-21608-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21608-9_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21607-2

  • Online ISBN: 978-3-319-21608-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics