Advertisement

Sustainable Industrial Air Pollution Management

  • Ramesha ChandrappaEmail author
  • Umesh Chandra Kulshrestha
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Gone are the days wherein industries are considered as main culprits of air pollution. The industries chimneys with emissions are hardly symbol of development and most of the air pollution equipments are available at competent prices with good service backup. Apart from end of pipe pollution control equipment this manufacturers are adopting new methods. This chapter discusses extended producers responsibility, extended polluters responsibility, zoning atlas for siting industries, green technologies, green belt, environmental impact assessment and solutions in some important air polluting industries.

Keywords

Municipal Solid Waste Coal Seam Thermal Power Plant Environmental Impact Assessment Environmental Management System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Azhaguraajan, A., Selvakumar, N., & Suresh, A. (2014). Environment friendly fireworks manufacturing using nano scale flash powder. Journal of Scientific & Industrial Research, 73, 479–484.Google Scholar
  2. Bela, G. L. (Ed.). (1974). Environmental Managers Handbook, Air Pollution (Vol. II). Radnor: Chilton Book Company.Google Scholar
  3. Bengston, D.N., & Yeo-Chang, Y (Ed.). (2005). Policies for managing urban growth and landscape change: A key to conservation in the 21st Century (51 p). Gen. Tech. Rep. NC-265. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Research Station.Google Scholar
  4. Bengston, D. N., Fletcher, J., & Nelson, K. (2004). Public policies for managing urban growth and protecting open space: Policy instruments and lessons learned in the United States. Landscape and Urban Planning., 69, 271–286.CrossRefGoogle Scholar
  5. Beschkov V, (2004). Control of pollution in the non-ferrous metals industry. In B. Nath & G. St. Cholakov (Eds.) Pollution control technologies. Encyclopedia of Life Support Systems (EOLSS). Developed under the Auspices of the UNESCO, Eolss Publishers, Paris, France. http://www.eolss.net. Retrieved June 9, 2014.
  6. Beschkov, V. (2006). Pollution control in industrial processes. In B. Nath & G. St. Cholakov (Eds.) Pollution control technologies. Encyclopedia of Life Support Systems (EOLSS). Developed under the Auspices of the UNESCO, Eolss Publishers, Paris, France. http://www.eolss.net. Retrieved June 9, 2014.
  7. Bhopal, R. S., Phillimore, P., Moffatt, S., & Foy, C. (1994). Journal of Epidemiology and Community Health, 48, 237–247.CrossRefGoogle Scholar
  8. Boonlong, P., Tantakitti, C., Ingsuwan, P., Sucharitkul, T., Sitthipong, N., Kiatpakdee, W., et al. (1994). Energy conservation in tobacco curing. A Final report submitted to ASEAN Working Group on Non-Conventional Energy Research and ASEAN-Australia Energy Cooperation Programme Phase II, 36 p. Project no. ECI-6, February 1994.Google Scholar
  9. Boubel, R. W., Fox, D. L., Turner, D. B., & Stern, A. C. (1994a). Fundamentals of. San Diego: Academic Press.Google Scholar
  10. Boubel, R. W., Fox, D. L., Turner, D. B., & Stern, A. C. (1994b). Fundamentals of Air Pollution. New York: Academic Press.Google Scholar
  11. CPCB (Central Pollution Control Board). (2008). Comprehensive industry document on pulse, Wheat, Rice Mills, CPCB, Delhi.Google Scholar
  12. Central Environmental Autohrity. (2010). Annual report. Srilanka, Colombo: Ministry of Environment.Google Scholar
  13. CPCB. (2009). Comprehensive industry document stone crushers. Delhi: CPCB.Google Scholar
  14. Chandrappa, R., & Das, D. B. (2012). Solid waste management principles and practice. Heidelberg: Springer.Google Scholar
  15. Dawkins, C. J., & Nelson, A. C. (2002). Urban containment policies and housing prices: an international comparison with implications for future research. Land Use Policy, 19, 1–12.CrossRefGoogle Scholar
  16. Dee, N., Baker, J., Drobny, N., Duke, K., Whitman, I., & Fahringer, D. (1973). An environmental evaluation system for water resource planning. Water Resources Research, 9(3), 523–535.CrossRefGoogle Scholar
  17. Environment Canada. (2015). About EC. http://www.ec.gc.ca/default.asp?lang=En&n=BD3CE. Accessed on 11th June 2015.
  18. Epanet. (2015). European Network of the Heads of Environment Protection Agencies. http://epanet.pbe.eea.europa.eu/european_epas/countries. Accessed on 11th June 2015.
  19. European Commission. (2001). Integrated pollution prevention and control (IPPC) best available techniques reference document on the production of iron and steel. http://eippcb.jrc.ec.europa.eu/reference/BREF/isp_bref_1201.pdf. Accessed on 9th June 2014.
  20. Ferré-Huguet, N., Nadal, M., Mari, M., Schuhmacher, M., Borrajo, M. A., & Domingo, J. L. (2007). Monitoring metals near a hazardous waste incinerator. Temporal trend in soils and herbage. Bulletin of Environment Contamination and Toxicology, 79, 130–134.CrossRefGoogle Scholar
  21. Freer-Smith, P. H., Beckett, K. P., & Taylor, G. (2005). Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides X trichocarpa ‘Beaupre’, Pinus nigra and X Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environmental Pollution, 133(1), 157–167.CrossRefGoogle Scholar
  22. Geels, F. W. (2002). Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study. Research Policy, 31, 1257–1274.CrossRefGoogle Scholar
  23. Goel, A., Yadav, R. S. (2014), Control and Prevention techniques of fugitive emissions from coal -fired thermal power plants. Indian Journal of Air pollution Control XIV(1).Google Scholar
  24. Grübler, A. (1998). Technology and global change. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Grübler, A., Nakicenovic, N., & Nordhaus, W. D. (2002). Technological change and the environment. Washington, DC: Resources for the Future.Google Scholar
  26. Gurijala, K. R., Sa, P., & Robinson, J. A. (1997). Statistical modeling of methane production from landfill samples. Applied and Environment Microbiology, 63, 3797–3803.Google Scholar
  27. Habashi, F. (2011). Pollution problems in the metallurgical industry: A review. Journal of Mining & Environment, 2(1), 7–26.Google Scholar
  28. Show, K.–Y. (2011). Green technology. In UNESCO-EOLSS Joint Committee (Ed.), Mechanical engineering. Encyclopedia of Life Support Systems(EOLSS). Developed under the Auspices of the UNESCO. Paris, France: Eolss Publishers. http://www.eolss.net. Retrieved August 27, 2014.
  29. Kuhn, M. (2003). Greenbelt and green heart: Separating and integrating landscapes in European city regions. Landscape and Urban Planning., 64, 19–27.CrossRefGoogle Scholar
  30. Lacerda, L. D. (1997). Global mercury emissions from gold and silver mining. Water, Air, and Soil pollution, 97, 209–221.Google Scholar
  31. Llobet, J. M., Schuhmacher, M., & Domingo, J. L. (2002). Spatial distribution and temporal variation of metals in the vicinity of a municipal solid waste incinerator after a modernization of the flue gas cleaning systems of the facility. Science of the Total Environment, 284, 205–214.CrossRefGoogle Scholar
  32. Mohammed, F., et al. (2009). Review on landfill gas emission to the atmosphere. European Journal of Scientific Research, 30(3), 427–436.Google Scholar
  33. Mari, M., & Domingo, J. L. (2010). Toxic emissions from crematories: A review. Environment International, 36, 131–137.CrossRefGoogle Scholar
  34. Munton, R. (1983). London’s green belt: containment in practice (p. 178). London, England: George Allen & Unwin.Google Scholar
  35. Musango, J. K. (2012). Technology assessment of renewable energy sustainability in South Africa. Dissertation Presented for the degree of Doctor of Philosophy School of Public Leadership, Stellenbosch University.Google Scholar
  36. Muenhor, D., Satayavivad, J., LimpaseniW, Parkpian P., Delaune, R. D., Gambrell, R. P., & Jugsujinda, A. (2009). Mercury contamination and potential impacts from municipal waste incinerator on Samui Island, Thailand. Journal of Environmental Science and Health. Part A: Toxic Hazardous Substances and Environmental Engineering, 44, 376–387.CrossRefGoogle Scholar
  37. Naranjo, N. M., Meima, J. A., Haarstrick, A., & Hempel, D. C. (2004). Modelling and experimental investigation of environmental influences on the acetate and methane formation in solid waste. Waste Manage (Oxford), 24, 763–773.CrossRefGoogle Scholar
  38. Nowak, D. J., Crane, D. E., & Stevens, J. C. (2006). Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening, 4, 115–123.CrossRefGoogle Scholar
  39. Peachey, C. J., Sinnett, D., Wilkinson, M., Morgan, G. W., Freer-Smith, P. H., & Hutchings, T. R. (2009). Deposition and solubility of airborne metals to four plant species grown at varying distances from two heavily trafficked roads in London. Environmental Pollution, 157, 2291–2299.CrossRefGoogle Scholar
  40. Pollock, P. (1998). Controlling sprawl in Boulder: Benefits and pitfalls. Land Lines (Newsletter of the Lincoln Institute of Land Policy), 10(1), 1–3.Google Scholar
  41. Psomopoulos, C. S., Bourka, A., & Themelis, N. J. (2009). Waste-to-energy: A review of the status and benefits in USA. Waste Management (Oxford), 29(2009), 1718–1724.CrossRefGoogle Scholar
  42. Qiu, Y., Guan, D., Song, W., & Huang, K. (2009). Capture of heavy metals and sulfur by foliar dust in urban Huizhou. Chemosphere, 75, 447–452.CrossRefGoogle Scholar
  43. Rajathilagam, N., Rajathilagam, N., & Azhagurajan, A. (2012). Accident analysis in fireworks industries for the past decade in Sivakasi. International Journal of Research In Social Sciences, 2(2), 170–183.Google Scholar
  44. Richardson, H. W., & Bae, C. H. C. (Eds.). (2004). Urban sprawl in Western Europe and the United States (p. 325). Burlington, VT: Ashgate.Google Scholar
  45. Simon, C., & Wong, W. L. (1990). Tobacco in the 3rd World, Clarion. http://www.nsma.org.au/world3.html. Retrieved on November 15 2010.
  46. Taylor, J., Paine, C., & Fitz Gibbon, J. (1995). From greenbelt to greenways: four Canadian case studies. Landscape and Urban Planning, 33, 47–64.CrossRefGoogle Scholar
  47. Weaver, P., Jansen, L., Grootveld, G., Spiegel, E., & Van, P. (2000). Sustainable technology development. Sheffield, UK: Greenleaf Publishing.Google Scholar
  48. The Environmental Costs of Tobacco Production. http://www.who.int/tobacco/framework/public_hearings/panos_institute.pdf. Accessed on July 29, 2014.
  49. USEPA. (1975). Manpoer Planning model. North Carilona: USEPA.Google Scholar
  50. USEPA. (2000). Hot mix asphalt plants emission assessment report, EPA 454/R-00-019.Google Scholar
  51. USEPA. (2015). Greening epa. http://www.epa.gov/greeningepa. Accessed on June 11, 2015.
  52. WHO. (2014). Extract from Panos Media Briefing: Tobacco: The Smoke Blows South.Google Scholar
  53. Wikipedia. (2013). Bangalore. http://en.wikipedia.org/wiki/Bangalore. Accessed December 22, 2013.
  54. Williams, P. T. (2005). Waste treatment and disposal (2nd ed.). England: Wiley.CrossRefGoogle Scholar
  55. World Bank. (1995). Pollution Prevention and abatement handbook. Washington D.C.: World bank.Google Scholar
  56. Yokohari, M., Takeuchi, K., Watanabe, T., & Yokota, S. (2000). Beyond greenbelts and zoning: a new planning concept for the environment of Asian mega-cities. Landscape and Urban Planning, 47, 159–171.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Waste Management CellKarnataka State Pollution Control BoardBangaloreIndia
  2. 2.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations