Advertisement

Fundamentals of Treatment, and Process Design for Air Pollution Control

  • Ramesha ChandrappaEmail author
  • Umesh Chandra Kulshrestha
Chapter
  • 1.3k Downloads
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Sustainable technological solution can be low-tech or hi-tech which involve high cost or low cost. To be sustainable the solution should be low-carbon, low-energy and low-chemical. This chapter discusses the fundamentals of array of solution available in literature and practice so that one can chose from many possible solutions to achieve sustainable solution.

Keywords

Diesel Engine Selective Catalytic Reduction Environmental Kuznets Curve Diesel Particulate Filter Homogeneous Charge Compression Ignition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alexander, R. (1999). Compost markets grow with environmental applications. Biocycle, 40, 43–48.Google Scholar
  2. Allwood, J. M., Cullen, J. M., Carruth, M. A., Cooper, D. R., McBrien, M., Milford, R. L., et al. (2012). Sustainable materials: With both eyes open (p. 373 pp). Cambridge, England: UIT Cambridge Ltd. ISBN: 9781906860059.Google Scholar
  3. Beachler, D. S., Joseph, J., Pornpelia, M., (1995). Fabric filter operation review, Self-instructional manual APTI course SI: 412A (2nd ed.). Raleigh: North Carolina State University (Catalysis Today 2006, 117(4), 407–418).Google Scholar
  4. Carruth, M. A., Allwood, J. M., Moynihan, M. C. (2011). The technical potential for reducing metal requirements through lightweight product design. Resources, Conservation and Recycling, 57, 48–60. doi: 10.1016/j.resconrec. 2011.09.018, ISSN: 0921-3449.Google Scholar
  5. Chandrappa, R., & Das, D. B. (2014). Sustainable water engineering—theory and practice. Chichester: Wiley.Google Scholar
  6. CPCB (2007) Assessment of requirement of Bag filter vis a vis electrostatic precipitator in thermal power plants. PROGRAMME OBJECTIVE SERIES PROBES/105/2007. Delhi: CPCB.Google Scholar
  7. Devinny, J. S., Deshusses, M. A., & Webster, T. S. (1999a). Biofiltration for air pollution control (pp. 1–5). New York: Lewis Publishers.Google Scholar
  8. Devinny, J. S., Deshusses, M. A., & Webster, T. S. (1999b). Biofiltration for air pollution control (pp. 1–5). New York: Lewis Publishers.Google Scholar
  9. Elholm, P., Lund, C. R., Christensen, K. (1998). Pulse energisation solving sinter strand ESP problems. In Proceedings ICESP VII, September 20–25, 1998, Kyongju (Korea. Engrs, 29, 356–383).Google Scholar
  10. EPA. (2001). Technical bulletin, refrigerated condensers for control of organic air emissions. North Carolina: Research Triangle Park.Google Scholar
  11. EPA (1998) U.S. EPA, Office of Air Quality Planning and Standards, “Stationary source control techniques document for fine particulate matter,” EPA-452/R-97-001. North Carolina: Research Triangle Park.Google Scholar
  12. Faiz, A., Weaver, C. S., & Walsh, M. P. (2002). Air pollution from motor vehicles standards and technologies for controlling emissions. Washington, D.C.: The World Bank.Google Scholar
  13. Fischedick, M., Roy, J., Abdel-Aziz, A., Acquaye, A., Allwood, J. M., Ceron, J.-P., et al. (2014). Industry. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Climate change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.Google Scholar
  14. Flagan, R. C., & Seinfeld, J. H. (1988). Fundamentals of air pollution engineering. New Jersey: Prentice-Hall.Google Scholar
  15. Glenn, B. S., Anupma, P., & Ellina, V. S. (2011). Coal and peat fires: A global perspective Vol. 1: Coal—Geology and Combustion. Amsterdam: Elsevier.Google Scholar
  16. Greiner, G. P. (1993). Fabric filter—Baghouses II. Operation, maintenance, and trouble shooting (a user’s manual). Salem: Valley Printers.Google Scholar
  17. Grossman, G. M., & Krueger, A. B. (1995). Economic growth and the environment. Quarterly Journal of Economics, 110(2), 353–377.CrossRefGoogle Scholar
  18. Gustavsonn, J., Cederberg, C., Sonesson, U., van Otterdijk, R., & Meybeck, A. (2011). Global food losses and food waste (p. 38). Düsseldorf: United Nations Food and Agriculture Organization.Google Scholar
  19. Habashi, F. (2011). Pollution problems in the metallurgical industry: A review. Journal of Mining & Environment, 2(1), 7–26.Google Scholar
  20. Heck, R. M., & Farrauto, R. J. (1995). Catalytic air pollution control. New York: Van Nostrand Reinhold.Google Scholar
  21. Henning, K. D., & Schäfer, S. (1993). Impregnated activated carbon for environmental protection. Gas Separation and Purification, 7, 235–240.CrossRefGoogle Scholar
  22. Iwamoto, M., et al. (1991). Removal of nitrogen monoxide through a novel catalytic process. Journal of Physical Chemistry, 95, 3727–3730.CrossRefGoogle Scholar
  23. Jänicke, M., Binder, M., & Mönch, H. (1997). ‘Dirty Industries’: Patterns of change in industrial countries. Environmental & Resource Economics, 9, 467–491.Google Scholar
  24. Kainuma, M., Miwa, K., Ehara, T., Akashi, O., & Asayama, Y. (2013). A low carbon society: global visions, pathways, and challenges. Climate Policy, 13, 6–22.CrossRefGoogle Scholar
  25. Schnelle, K. B., Jr., & Brown, C. A. (2002) Air pollution control technology handbook. Florida: CRC Press.Google Scholar
  26. Lapple, C. E. (1951). Processes use many collector types. Chemical Engineering, 58, 144–151.Google Scholar
  27. McKenna, J. D., & Turner, J. H. (1989). Fabric filter-baghouses I, theory, design, and selection. Roanoke: ETS.Google Scholar
  28. Mines, R. O., Jr. (2014). Environmental engineering principles and practice. Chichester: John Wiley and Sons.Google Scholar
  29. Mudliar, S., Giri, B., Padoley, K., Satpute, D., Dixit, R., Bhatt, P., et al. (2010). Bioreactors for treatment of VOCs and odours—A review. Journal of Environmental Management, 91(2010), 1039–1054.CrossRefGoogle Scholar
  30. Neumayer, E. (2003). Weak versus strong sustainability. Cheltenham and Northampton: Edward Elgar.Google Scholar
  31. Perry, Robert H., & Green, Don W. (1997). Perry’s chemical engineers’ handbook (7th ed.). New York: McGraw-Hill.Google Scholar
  32. Ramesha, C. (1995). Studies on modified cyclone separators. MS thesis, Chennai: Indian Institute of Technology.Google Scholar
  33. Seader J. D., Henley, E. J., & Roper, D. K. (1998). Separation process principles: Chemical and biochemical operations. New York.Google Scholar
  34. Shareefdeen, Z., & Singh, A. (2005a). Biotechnology for odor and air pollution control. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
  35. Shareefdeen, Z., & Singh, A. (2005b). Biotechnology for odor and air pollution control. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
  36. Shelef, M. (1995). Selective catalytic reduction of NOx with N-free reductants. Chemical Reviews, 95, 209–225.CrossRefGoogle Scholar
  37. Stairmand (1951) The design and performance of cyclone separators. Transactions of the Institution of Chemical Engineers, 29, 356–383.Google Scholar
  38. Stern, A. C. (Ed.). (1977). Air pollution (3rd ed., Vol. IV). New York: Academic Press.Google Scholar
  39. Swanson, W. J., & Loehr, R. C. (1997). Biofiltration: fundamentals, design and operation principles, and applications. Journal of Environmental Engineering, 123, 538–546.CrossRefGoogle Scholar
  40. Swift, P. (1969). Dust control in industry. Steam Heating Engineering, 38, 453–456.Google Scholar
  41. Twigg, M. (2006). Roles of catalytic oxidation in control of vehicle exhaust emissions. Catalysis, 117(4), 407–418 (October 15, 2006).Google Scholar
  42. US Department of Energy (US DOE). (1989). Energy efficiency and renewable energy, Improving fan system performance—a sourcebook for industry. www1.eere.energy.gov/industry/bestpractices/pdfs/fan_sourcebook.pdf. Retrieved on 26 October, 2014.
  43. USEPA. (1985). Guideline for determination of good engineering practice stack height (Technical support document for the stack height regulations, Revised), North Carilona.Google Scholar
  44. Utikar, R., Darmawan, N., Tade, M., Li, Q, Evans, G., Glenny, M., & Pareek, V. (2010). Hydrodynamic simulation of cyclone separators. In H. W. Oh (Ed.), Computational fluid dynamics. Croatia: InTech.Google Scholar
  45. White, H. J., (1963). Industrial electrostatic precipitation. Addison-Wesly.Google Scholar
  46. Yu Yao, Y.-F., & Kummer, J. T. (1977). A study of high temperature treated supported metal oxide catalysts. Journal of Catalysis, 46, 388–401.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Waste Management CellKarnataka State Pollution Control BoardBengaluruIndia
  2. 2.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations