Advertisement

Air Quality Issues

  • Ramesha ChandrappaEmail author
  • Umesh Chandra Kulshrestha
Chapter
  • 1.2k Downloads
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Air quality changes from place to place and time to time and so as air quality issues. The air quality issues depend on types of air pollutants, regulatory issues, activity within the region, climate. Pollutants do not respect political boundaries and hence the pollutants from one country can just damage as much or greater than the country of origin. This chapter elaborates air quality issues and possible solutions along with monitoring, inventorisation, and modeling.

Keywords

Acute Exposure Positive Matrix Factorization Allyl Chloride Methyl Chloride Methyl Isocyanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adema, E. H., Mejstřík, V., & Binek, B. (1993). The determination of NH3 concentration gradients in a spruce forest using a passive sampling technique. Water, Air and Soil Pollution, 69, 321–335.CrossRefGoogle Scholar
  2. Atkins, D. H. F., Law, D. V., Neate, M., Sandalls, R., Sandalls, J., Bradley, L., et al. (1990). Survey of nitrogen dioxide in the royal borough of Kensington and Chelsea. Harwell, UK: UKAEA.Google Scholar
  3. ATSDR. (1989). Toxicological profile for bis(chloromethyl). Atlanta: Public Health Service, U.S. Department of Health and Human Services.Google Scholar
  4. ATSDR. (1990). Toxicological profile for 2,4,6-trichlorophenol. Atlanta: U.S. Public Health Service, U.S. Department of Health and Human Services.Google Scholar
  5. ATSDR. (1992). Toxicological profile for antimony. Altanta: U.S. Public Health Service, U.S. Department of Health and Human Services.Google Scholar
  6. ATSDR. (1996). Toxicological profile for carbon disulfide (update). Atlanta: Public Health Service, U.S. Department of Health and Human Services.Google Scholar
  7. ATSDR. (1997). Toxicological profile for nickel (update). Altanta: Public Health Service, U.S. Department of Health and Human Services.Google Scholar
  8. ATSDR. (1999). Toxicological profile for mercury. Atlanta: Public Health Service, U.S. Department of Health and Human Services.Google Scholar
  9. Ayers, G. P., Keywood, M. D., Gillett, R., Manins, P. C., Malfroy, H., & Bardsley, T. (1998). Validation of passive diffusion samplers for SO2 and NO2. Atmospheric Environment, 32(20), 3587–3592.CrossRefGoogle Scholar
  10. Bartkow, M. E., Hawker, D. W., Kennedy, K. E., & Muller, J. F. (2004). Characterizing uptake kinetics of PAHs from the air using polyethylene-based passive air samplers of multiple surface area-to-volume ratios. Environmental Science and Technology, 38, 2701–2706.CrossRefGoogle Scholar
  11. Begerow, J., Jermann, E., Keles, T., Ranft, U., & Dunemann, L. (1995). Passive sampling for volatile organic compounds (VOCs) in air at environmentally relevant concentration levels. Fresenius’ Journal of Analytical Chemistry, 351(6), 549–554.CrossRefGoogle Scholar
  12. Bertoni, G., Canepari, S., Rotatori, M., Fratarcangeli, R., & Liberti, A. (1990). Evaluation tests and applications of a double-layer tube-type passive sampler. Journal of Chromatography, 522, 285–294.CrossRefGoogle Scholar
  13. Beveridge, J. L., & Duncan, H. J. (1981). Quantitative sampling of trace organic vapours by gas syringe and porous polymer adsorbent methods. A comparative study using naphthalene as a reference substance. Analytical Letters, 14(A9), 689–705.CrossRefGoogle Scholar
  14. Bishop, E. C., & Hossain, M. A. (1984). Field comparison between two nitrous oxide (N2O) passive monitors and conventional sampling methods. American Industrial Hygiene Association Journal, 45(12), 812–816.CrossRefGoogle Scholar
  15. Brauer, M., & Brook, J. R. (1995). Personal and fixed-site measurements with a passive sampler. Journal of the and Waste Management Association, 45, 529–537.CrossRefGoogle Scholar
  16. Budavari, S. (Ed.). (1989). The Merck index. An encyclopedia of chemicals, drugs, and biologicals (11th ed.). Rahway, NJ: Merck and Co., Inc.Google Scholar
  17. Cadoff, B. C., & Hodgeson, J. (1983). Passive sampler for ambient levels of nitrogen dioxide. Analytical Chemistry, 55, 2083–2085.CrossRefGoogle Scholar
  18. Campbell, G. W., Stedman, J. R., & Stevenson, K. (1994). A survey of nitrogen dioxide concentrations in the United Kingdom using diffusion tubes, July–December 1991. Atmospheric Environment, 28, 477–486.CrossRefGoogle Scholar
  19. Cao, X.-L., & Hewitt, C. N. (1991). Application of passive samplers to the monitoring of low concentrations of volatile organic compounds in indoor and ambient air: A review. Environmental Technology, 12, 1055–1062.CrossRefGoogle Scholar
  20. Cao, X.-L., & Hewitt, C. N. (1993). Evaluation of tenax-GR adsorbent for the passive sampling of volatile organic compounds at low concentrations. Atmospheric Environment, 27A, 1865–1872.CrossRefGoogle Scholar
  21. Cao, X.-L., & Hewitt, C. N. (1994a). Build-up of artifacts on adsorbents during storage and its effect on passive sampling and gas chromatography flame ionization detection of low concentrations of volatile organic compounds in air. Journal of Chromatography A, 688, 368–374.CrossRefGoogle Scholar
  22. Cao, X.-L., & Hewitt, C. N. (1994b). Study of the degradation by of adsorbents and of hydrocarbons adsorbed during the passive sampling of air. Environmental Science and Technology, 28, 757–762.CrossRefGoogle Scholar
  23. CAS (Chemical Abstract Service). (2015). CAS registry—the gold standard for chemical substance information. http://www.cas.org/content/chemical-substances. Accessed 01 May 2015.
  24. Clayton, G. D., & Clayton F. E. (Eds.). (1981). Patty’s industrial hygiene and toxicology (Vol. IIB, 3rd revised ed.). New York: Wiley.Google Scholar
  25. Cofala, J., Bertok, I., Borken-Kleefeld, J., Heyes, C., Klimont, Z., Rafaj, P., et al. (2012). Emissions of pollutants for the world energy outlook 2012 energy scenarios. Laxenburg: International Institute for Applied Systems Analysis.Google Scholar
  26. Coutant, R. W. (1985). Evaluation of passive sampling devices (PSDs). Research Triangle Park, NC: US EPA, Environmental Monitoring Systems Laboratory.Google Scholar
  27. CPCB. (2003). Guidelines for ambient quality monitoring. New Delhi.Google Scholar
  28. CSE (Centre for Science and Environment). (2014). Delhi’s dream of clean air goes up in smoke. Down to Earth, 22(19), 16–28.Google Scholar
  29. Edwards, D. P., Halvorson, C. M., & Gille, J. C. (1999). Radiative transfer modeling for the EOS terra satellite measurement of in the (MOPITT) instrument. Journal of Geophysical Research, 104, 16755–16775.Google Scholar
  30. EPA. (1997). Health effects assessment summary tables. FY 1997 update. Solid waste and emergency response, office of emergency and remedial response, Cincinnati, OH. EPA/540/R-97-036.Google Scholar
  31. European Environment Agency. (2013). Air quality in Europe—2013 report. Copenhagen: European Environment Agency.Google Scholar
  32. Ferm, M., & Sjödin, Å. (1992). Proposal of an impregnated filter technique for monitoring of NO2 at EMEP stations. In: R. Ballman et al. (Eds.), Proceedings of an EMEP Workshop on Measurements of Nitrogen-Containing Compounds at Les Diablerets, Switzerland, 29 June–3 July (pp. 173–181).Google Scholar
  33. Ferm, M., & Svanberg, P.-A. (1998). Cost-efficient techniques for urban and background measurements of SO2 and NO2. Atmospheric Environment, 32(8), 1377–1381.CrossRefGoogle Scholar
  34. Fox, C. B. (1873) Ozone and antozone. London: J. and A. Churchill.Google Scholar
  35. Gair, A. J., Penkett, S. A., & Oyola, P. (1991). Development of a simple passive technique for the determination of nitrogen dioxide in remote continental locations. Atmospheric Environment, 25A, 1927–1939.CrossRefGoogle Scholar
  36. Grosjean, D., & Hisham, M. W. M. (1992). A passive sampler for atmospheric. Journal of the Air and Waste Management Association, 42, 169–173.CrossRefGoogle Scholar
  37. Grosjean, D., Williams, E. L., II. (1992a). A passive sampler for airborne formaldehyde. Atmospheric Environment, 26A, 2923–2928.Google Scholar
  38. Grosjean, D., Williams, E. L., II. (1992b) Field tests of a passive sampler for atmospheric ozone at California Mountain Forest locations. Atmospheric Environment, 26A, 1407–1411.Google Scholar
  39. Grosjean, D., Williams, E. L., II, Grosjean, E. (1995). Monitoring ambient ozone with a network of passive samplers: A feasibility study. Environmental Pollution, 88, 267–273.Google Scholar
  40. Grosjean, D., Williams, E. L., & Grosjean, E. (1992). Passive sampling of atmospheric photochemical oxidants. International Journal of Environmental Analytical Chemistry, 49, 59–72.CrossRefGoogle Scholar
  41. Gupta, P., Khan, M. N., Silva, A. D., & Patadia, F. (2013). MODIS aerosol optical depth observations over urban areas in Pakistan: Quantity and quality of the data for air quality monitoring. Atmospheric Research, 4(2013), 43–52.Google Scholar
  42. Hangartner, M., Burri, P., & Monn, C. (1989) Passive sampling of nitrogen dioxide, sulfur dioxide and ozone in ambient air. In: L. J. Brasser & W. C. Mulder (Eds.), Proceedings of the 8th World Clean Air Congress, Man and His Ecosystem (Vol. 3, pp. 681–686). Amsterdam: Elsevier Science Publishers B.V.Google Scholar
  43. Harner, T., Farrar, N. J., Shoeib, M., Jones, K. C., & Gobas, F. (2003). Characterization of polymer-coated glass as a passive air sampler for persistent organic pollutants. Environmental Science and Technology, 37, 2486–2493.CrossRefGoogle Scholar
  44. Hauser, T. R., & Bradley, D. W. (1966). Specific spectrophotometric determination of in the atmosphere using 1,2-di-(4-pyridyl)ethylene. Analytical Chemistry, 38, 1529–1532.CrossRefGoogle Scholar
  45. Hewitt, C. N. (1991). Spatial variations in nitrogen dioxide concentrations in an urban area. Atmospheric Environment, 25B, 429–434.Google Scholar
  46. Hoff, R. M., & Christopher, S. A. (2009). Remote sensing of particulate pollution from space: Have we reached the promised land? Journal of Air and Waste Management Association, 59, 645–675Google Scholar
  47. International Agency for Research on Cancer (IARC). (1987). IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans (Supplement 7). Lyon: World Health Organization.Google Scholar
  48. John, H. S., & Spyros, N. P. (2006). Atmospheric chemistry and physics—from air pollution to climate change. Hoboken: Wiley.Google Scholar
  49. Kanno, S., & Yanagisawa, Y. (1992). Passive /oxidant sampler with coulometric determination using I2/Nylon-6 charge-transfer complex. Environmental Science and Technology, 26, 744–749.CrossRefGoogle Scholar
  50. Kazantzis, G. (1987) Cadmium. In L. Fishbein, A. Furst & M. A. Mehlman (Eds.), Genotoxic and carcinogenic metals: Environmental and occupational occurrence and exposure. Advances in Modern Environmental Toxicology (Vol. 11). New Jersey: Princeton Scientific Publishing Co.Google Scholar
  51. Klimont, Z., Cofala, J., Xing, J., Wei, W., Zhang, C., Wang, S., et al. (2009). Projections of SO2, NOx and carbonaceous aerosols emissions in Asia. Tellus B, 61, 602–617.Google Scholar
  52. Koutrakis, P., Wolfson, J. M., Slater, J. L., Mulik, J. D., Krohmiller, K., & Williams, D. D. (1990) Measurement of ozone exposures. In Proceedings of the 1990 US EPA/A&WMA International Symposium, Measurement of Toxic and Related Air Pollutants (pp. 468–474). Pittsburgh: Air and Waste Management Association.Google Scholar
  53. Krochmal, D., & Górski, L. (1991). Determination of nitrogen dioxide in ambient air by use of a passive sampling technique and triethanolamine as absorbent. Environmental Science and Technology, 25, 531–535.CrossRefGoogle Scholar
  54. Krochmal, D., & Kalina, A. (1997). A method of nitrogen dioxide and sulphur dioxide determination in ambient air by use of passive samplers and ion chromatography. Atmospheric Environment, 31, 3473–3480.CrossRefGoogle Scholar
  55. Krupa, S. V., & Legge, A. H. (2000). Passive sampling of ambient, gaseous air pollutants: An assessment from an ecological perspective. Environmental Pollution, 107, 31–45.CrossRefGoogle Scholar
  56. Larsen, Å., Jentoft, N. A., & Greibrokk, T. (1992). Determination of ppb levels of formaldehyde in air. The Science of the Total Environment, 120, 261–269.CrossRefGoogle Scholar
  57. Lee, K., Yanagisawa, Y., Hishinuma, M., Spengler, J. D., & Billick, I. H. (1992). A passive sampler for measurement of carbon monoxide using a solid adsorbent. Environmental Science and Technology, 26, 697–702.CrossRefGoogle Scholar
  58. Lee, K., Yanagisawa, Y., Spengler, J. D., & Davis, R. (1995). Assessment of precision of a passive sampler by duplicate measurements. Environment International, 21, 407–412.CrossRefGoogle Scholar
  59. Levin, J.-O., Andersson, K., & Lindahl, R. (1985). Determination of subpart-per-million levels of formaldehyde in air using active or passive sampling on 2,4-dinitrophenylhydrazine-coated glass fiber filters and high-performance liquid chromatography. Analytical Chemistry, 57, 1032–1035.CrossRefGoogle Scholar
  60. Levin, J.-O., Lindahl, R., & Andersson, K. (1986). A passive sampler for formaldehyde in air using 2,4-dinitrophenylhydrazine-coated glass fiber filters. Environmental Science and Technology, 20, 1273–1276.CrossRefGoogle Scholar
  61. Lewis, R. G., Mulik, J. D., Coutant, R. W., Wooten, G. W., & McMillin, C. R. (1985). Thermally desorbable passive sampling device for volatile organic chemicals in ambient air. Analytical Chemistry, 57, 214–219.CrossRefGoogle Scholar
  62. Liu, L.-J. S., Koutrakis, P., Leech, J., & Broder, I. (1995). Assessment of exposures in the greater metropolitan Toronto area. Journal of the and Waste Management Association, 45, 223–234.CrossRefGoogle Scholar
  63. Liu, L.-J. S., Olson, M. P., III, Allen, G. A., Koutrakis, P., McDonnell, W. F., Gerrity, T. R. (1994). Evaluation of the Harvard ozone passive sampler on human subjects indoors. Environmental Science and Technology, 28, 915–923.Google Scholar
  64. Manning, W. J., Krupa, S. V., Bergweiler, C. J., & Nelson, K. I. (1996). Ambient (O3) in three class I wilderness areas in the northeastern USA: Measurements with Ogawa passive samplers. Environmental Pollution, 91, 399–404.CrossRefGoogle Scholar
  65. Maroni, M., Seifert, B., & Lindwall, T. (Eds.). (1995). Indoor air quality a comprehensive reference book. Amsterdam: Elsevier.Google Scholar
  66. Martin, R. V. (2008). Satellite remote sensing of surface air quality. Atmospheric Environment, 42, 7823–7843.CrossRefGoogle Scholar
  67. Monn, C., & Hangartner, M. (1990). Passive sampling for ozone. Journal of the Air and Waste Management Association, 40(3), 357–358.CrossRefGoogle Scholar
  68. Mulik, J. D., Lewis, R. G., McClenny, W. A., & Williams, D. D. (1989). Modification of a high-efficiency passive sampler to determine nitrogen dioxide or formaldehyde in air. Analytical Chemistry, 61, 187–189.CrossRefGoogle Scholar
  69. Mulik, J. D., Varns, J. L., Koutrakis, P., Wolfson, M., Bunyaviroch, A., Williams, D. D., et al. (1991) Using passive sampling devices to measure selected air volatiles for assessing ecological change. In Proceedings of the 1991 US EPA/A&WMA International Symposium, Measurement of Toxic and Related Air Pollutants (pp. 1–6). Philadelphia: Air and Waste Management Association.Google Scholar
  70. Namiesnik, J., Gorecki, J., Kozlowski, E., Torres, L., & Mathieu, J. (1984). Passive dosimeters—an approach to atmospheric pollutants analysis. The Science of the Total Environment, 38, 225–258.CrossRefGoogle Scholar
  71. Nishikawa, Y., & Taguchi, K. (1987). Ion chromatographic determination of nitrogen dioxide and sulphur dioxide in the using triethanolamine-potassium hydroxide-coated cartridges. Journal of Chromatography, 396, 251–259.CrossRefGoogle Scholar
  72. Nishikawa, Y., Taguchi, K., Tsujino, Y., & Kuwata, K. (1986). Ion chromatographic determination of nitrogen dioxide in the by using a triethanolamine-coated cartridge. Journal of Chromatography, 370(1), 121–130.CrossRefGoogle Scholar
  73. Ockenden, W. A., Corrigan, B. P., Howsam, M., & Jones, K. C. (2001). Further developments in the use of semipermeable membrane devices as passive air samplers: Application to PCBs. Environmental Science and Technology, 35, 4536–4543.CrossRefGoogle Scholar
  74. Ockenden, W. A., Prest, H. F., Thomas, G. O., Sweetman, A., & Jones, K. C. (1998a). Passive air sampling of PCBs: Field calculation of atmospheric sampling rates by triolein-containing semipermeable membrane devices. Environmental Science and Technology, 32, 1538–1543.CrossRefGoogle Scholar
  75. Ockenden, W. A., Sweetman, A. J., Prest, H. F., Steinnes, E., & Jones, K. C. (1998b). Toward an understanding of the global atmospheric distribution of persistent organic pollutants: The use of semipermeable membrane devices as time-integrated passive samplers. Environmental Science and Technology, 32, 2795–2803.CrossRefGoogle Scholar
  76. Otson, R. (1989). Miniature sampler using in situ extraction and analysis. Journal of Environmental Science and Health, Part A—Environmental Science and Engineering, 24(7), 767–782.CrossRefGoogle Scholar
  77. Palmes, E. D. (1981). Development and application of a diffusional sampler for NO2. Environment International, 5(2), 97–100.CrossRefGoogle Scholar
  78. Pérez Ballesta, P., González Ferradás, E., & Miñana Aznar, A. (1992). Simultaneous passive sampling of volatile organic compounds. Chemosphere, 25(12), 1797–1809.CrossRefGoogle Scholar
  79. Peters, A. J., Lane, D. A., Gundel, L. A., Northcott, G. L., & Jones, K. C. (2000). A comparison of high volume and diffusion denuder samplers for measuring semivolatile organic compounds in the atmosphere. Environmental Science and Technology, 34, 5001–5006.CrossRefGoogle Scholar
  80. Roche, A., Thevenet, R., Jacob, V., Kaluzny, P., Ferrari, C., Baussand, P., et al. (1999). Performance of a thermally desorbable type-tube diffusive sampler for very low air concentrations monitoring. Atmospheric Environment, 33, 1905–1912.CrossRefGoogle Scholar
  81. Runeckles, V. C., & Bowen, P. A. (1999). The use of calibrated passive monitors to assess crop loss due to ozone in rural locations. In S. B. Agrawal & M. Agrawal (Eds.), Environmental pollution and plant responses. Boca Raton, FL: Lewis Publishers.Google Scholar
  82. Samhita, L. (2014). Pakinson’s trigger. Down to Earth, 22(16), 42.Google Scholar
  83. Scheeren, B. A., & Adema, E. H. (1996). Monitoring ambient ozone with a passive measurement technique: Method, field results and strategy. Water, Air and Soil, 91, 335–350.CrossRefGoogle Scholar
  84. Schjoerring, J. K. (1995). Long-term quantification of ammonia exchange between agricultural cropland and the atmosphere. I. Evaluation of a new method based on passive flux samplers in gradient configuration. Atmospheric Environment, 29, 885–893.CrossRefGoogle Scholar
  85. Shields, H. C., & Weschler, C. J. (1987). Analysis of ambient concentrations of organic vapors with a passive sampler. Journal of the Control Association, 37, 1039–1045.Google Scholar
  86. Shooter, D., Watts, S. F., & Hayes, A. J. (1995). A passive sampler for hydrogen sulfide. Environmental Monitoring and Assessment, 38, 11–23.CrossRefGoogle Scholar
  87. Sickles, J. E., II, Hodson, L. L., McClenny, W. A., Paur, R. J., Ellestad, T. G., Mulik, J. D., et al. (1990) Field comparison of methods for the measurement of gaseous and particulate contributors to acidic dry deposition. Atmospheric Environment, 24A(1), 155–165.Google Scholar
  88. Sittig, M. (1985). Handbook of toxic and hazardous chemicals and carcinogens (2nd ed.). Park Ridge, NJ: Noyes Publications.Google Scholar
  89. Soderstrom, H. S., & Bergqvist, P. A. (2004). Passive air sampling using semipermeable membrane devices at different wind-speeds in situ calibrated by performance reference compounds. Environmental Science and Technology, 38, 4828–4834.CrossRefGoogle Scholar
  90. Sommer, S. G., Sibbesen, E., Nielsen, T., Schjùrring, J. K., & Olesen, J. E. (1996). A passive flux sampler for measuring ammonia volatilization from manure storage facilities. Journal of Environmental Quality, 25, 241–247.CrossRefGoogle Scholar
  91. Surgi, M. R., & Hodgeson, J. Á. (1985). 10,10′-dimethyl-9,9′-biacridyl-idene impregnated film badge dosimeters for passive sampling. Analytical Chemistry, 57, 1737–1740.CrossRefGoogle Scholar
  92. Tang, H., Lau, T., Brassard, B. (1998) A new all-season passive sampling system for monitoring SO2 and NO2 in the atmosphere. In A. H. Legge, L. L. Jones (Eds.), Proceedings of the International SPEC Conference, Emerging Air Issues for the 21st Century: The Need for Multidisciplinary Management, VIP-78 (pp. 529–537). Pittsburgh: Air and Waste Management Association.Google Scholar
  93. Tremolada, P., Burnett, V., Calamari, D., & Jones, K. C. (1996). A study of the spatial distribution of PCBs in the UK using pine needles. Chemosphere, 32, 2189–2203.CrossRefGoogle Scholar
  94. USDHHS. (1993a). Hazardous substances data bank (HSDB, online database). In National Toxicology Information Program. Bethesda: National Library of Medicine.Google Scholar
  95. USDHHS. (1993b). Registry of toxic effects of chemical substances (RTECS, online database). In National Toxicology Information Program. Bethesda: National Library of Medicine.Google Scholar
  96. Uchiyama, S., Asai, M., & Hasegawa, S. (1999). A sensitive diffusion sampler for the determination of volatile organic compounds in ambient air. Atmospheric Environment, 33, 1913–1920.CrossRefGoogle Scholar
  97. USEPA. (1985). Health and environmental effects profile for aniline. Cincinnati: Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Office of Research and Development.Google Scholar
  98. USEPA. (1986). Health assessment document for nickel. EPA/600/8-83/012F. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  99. USEPA. (1987). Health assessment document for acetaldehyde. North Carolina: Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Office of Research and Development, Research Triangle Park.Google Scholar
  100. USEPA. (1997). Health effects assessment summary tables. FY 1997 update. Solid Waste and Emergency Response. Cincinnati, OH: Office of Emergency and Remedial Response. EPA/540/R-97-036.Google Scholar
  101. USEPA. (1999a). Integrated risk information system (IRIS) on 2-methylphenol. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  102. USEPA. (1999b). Integrated risk information system (IRIS) on 3-methylphenol. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  103. USEPA. (1999c). Integrated risk information system (IRIS) on bromoform. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  104. USEPA. (1999d). Integrated risk information system (IRIS) on isophorone. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  105. USEPA. (1999e). Integrated risk information system (IRIS) on chloroform. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  106. USEPA. (1999f). Integrated risk information system (IRIS) on 4-methylphenol. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  107. USEPA. (1999g). Integrated risk information system (IRIS) on 1,1-dichloroethane. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  108. USEPA. (1999h). Integrated risk information system (IRIS) on elemental mercury. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  109. USEPA. (1999i). Integrated risk information system (IRIS) on mercuric chloride. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  110. USEPA. (1999k). Integrated risk information system (IRIS) on 2,4,6-trichlorophenol. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  111. USEPA. (1999n). Integrated risk information system (IRIS) on chloromethyl methyl ether. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  112. USEPA. (1999o). Integrated risk information system (IRIS) on p,p-dichlorodiphenyldichloroethylene. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  113. USEPA. (1999p). Integrated risk information system (IRIS) on methyl mercury. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  114. USEPA. (1999q). Integrated risk information system (IRIS) on nickel carbonyl. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  115. USEPA. (1999r). Integrated risk information system (IRIS) on nickel refinery dust. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  116. USEPA. (1999s). Integrated risk information system (IRIS) on nickel subsulfide. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  117. USEPA. (1999t). Integrated risk information system (IRIS) on nickel, soluble salts. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  118. USEPA. (2009). Integrated risk information system (IRIS) on 1,3-butadiene. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.Google Scholar
  119. USEPA. (2015). http://www.epa.gov/airtoxics/hlthef/chlo-zil.html downloaded on 1/3/2015.
  120. Wang, S. X., & Hao, J. M. (2012). Air quality management in China: Issues, challenges, and options. Journal of Environmental Sciences-China, 24, 2–13.Google Scholar
  121. Wang, S. X., Zhao, B., Cai, S. Y., Klimont, Z., Nielsen, C., McElroy, M. B., et al. (2014). Emission trends and mitigation options for air pollutants in East Asia. Atmospheric Chemistry and Physics Discussion, 14, 2601–2674.CrossRefGoogle Scholar
  122. Werner, H. (1989) Die eignung von indigopapieren zur abschätzungder ozondeposition. In Proceedings of the International Congress on Forest Decline Research: State of Knowledge and Perspectives (Vol. 1) (Abstr). Zu beziehen bei der Literaturabteilung des Kernforschungszentrums. Karlsruhe, Germany: Karlsruhe GmbH.Google Scholar
  123. Yu, L., Wang, G., Zhang, R., Zhang, L., Song, Y., Wu, B., et al. (2013) Characterization and source apportionment of PM2.5 in an urban environment in Beijing. Aerosol and Air Quality Research, 13, 574–583.Google Scholar
  124. Zhang, Q., Streets, D. G., He, K., Wang, Y., Richter, A., Burrows, J. P., et al. (2007) NOx emission trends for China, 1995–2004: The view from the ground and the view from space. Journal of Geophysical Research: Atmospheres, 112.Google Scholar
  125. Zhang, Q., Geng, G. N., Wang, S. W., Richter, A., & He, K. B. (2012a). Satellite remote sensing of changes in NOx emissions over China during 1996–2010, Chinese. Science Bulletin, 57, 2857–2864.CrossRefGoogle Scholar
  126. Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M., & Sun, J. Y. (2012b). Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmospheric Chemistry and Physics, 12, 779–799.CrossRefGoogle Scholar
  127. Zhou, J., & Smith, S. (1997). Measurement of ozone concentrations in ambient air using a badge-type passive monitor. Journal of the Air and Waste Management Association, 47, 697–703.CrossRefGoogle Scholar
  128. Zhao, B., Wang, S. X., Liu, H., Xu, J. Y., Fu, K., Klimont, Z., et al. (2013). NOx emissions in China: Historical trends and future perspectives. Atmospheric Chemistry and Physics, 13, 9869–9897.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Waste Management CellKarnataka State Pollution Control BoardBangaloreIndia
  2. 2.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations