Skip to main content

Atmospheric Circulation and Dynamical Processes

Basic Principles and a Case Study

  • Chapter
  • First Online:
Atmospheric and Space Sciences: Neutral Atmospheres

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

Abstract

Fundamentals of eddies and atmospheric circulation are briefly presented. Atmospheric circulation patterns, the large-scale general circulation and diagnostic techniques for characterizing atmospheric flow, such as Transformed Eulerian framework, are discussed. Basic features of general circulation models are introduced and their application in studying atmospheric circulation and coupling processes are illustrated in the context of sudden stratospheric warmings and atmospheric gravity wave propagation and dissipation.

The motion of the surface of water resembles the behaviour of hair, which has two motions, of which one depends on the weight of the strands, the other on the line of its revolving; thus water makes revolving eddies, one part of which depends upon the impetus of the principle current, and the other depends on the incident and reflected motions.

—Leonardo da Vinci (16th century A.D.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews DG, McIntyre ME (1976) Planetary waves in horizontal and vertical shear: the generalized eliassen-palm relation and the mean zonal acceleration. J Atmos Sci 33:2031–2048

    Article  Google Scholar 

  • Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. International geophysics series, vol 40. Academic Press, London

    Google Scholar 

  • Beagley SR, de Grandepre J, Koshyk JN, McFarlane NA, Shepherd TG (1997) Radiative-dynamical climatology of the first generation Canadian middle atmosphere model. Atmos Ocean 35:293–331

    Article  Google Scholar 

  • Becker E (2011) Dynamical control of the middle atmosphere. Space Sci Rev 168:283–314. doi:10.1007/s11214-011-9841-5

    Article  Google Scholar 

  • Bjerknes V (1904) Das Problem von der Wettervorhersage, betrachtet vom Standpunkt der Mechanik und derPhysik. Meteor Z 21:1–7

    Google Scholar 

  • Charney JG, Drazin PG (1961) Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J Geophys Res 66(1):83–109

    Article  Google Scholar 

  • Chau JL, Fejer BG, Goncharenko LP (2009) Quiet variability of equatorial e\(\times \)b drifts during a sudden stratospheric warming event. Geophys Res Lett 36:L05101. doi:10.1029/2008GL036785

    Google Scholar 

  • Courant R, Friedrichs K, Lewy H (1928) über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen 100(1):32–74. doi:10.1007/BF01448839, http://dx.doi.org/10.1007/BF01448839

  • Dunkerton T, Hsu CPF, McIntyre ME (1981) Some eulerian and lagrangina diagnostics for a model stratospheric warming. J Atmos Sci 38:819–843

    Article  Google Scholar 

  • Edmon HJ, Hoskins BJ, McIntyre ME (1980) Eliassen-palm cross sections for the troposphere. J Atmos Sci 37:2,600–2,616

    Google Scholar 

  • Fritts DC (1984) Gravity wave saturation in the middle atmosphere: a review of theory and observations. Rev Geophys Space Phys 22:275–308

    Article  Google Scholar 

  • Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41(1):1003. doi:10.1029/2001RG000106

    Article  Google Scholar 

  • Fritts DC, Vadas SL, Wan K, Werne JA (2006) Mean and variable forcing of the middle atmosphere by gravity waves. J Atmos Sol-Terr Phys 68:247–265

    Article  Google Scholar 

  • Fuller-Rowell TJ, Rees D, Quegan S, Moffett RJ, Codrescu MV, Millward GH (1996) A coupled thermosphere-ionosphere model (CTIM). In: Schunk RW (ed) Programme solar terrestrial energy (STEP) Handbook. Utah, pp 217–238

    Google Scholar 

  • Garcia RR, Marsh DR, Kinnison DE, Boville BA, Sassi F (2007) Simulations of secular trends in the middle atmosphere. J Geophys Res 112:D09301. doi:10.1029/2006JD007485

    Google Scholar 

  • Gardner LC, Schunk RW (2011) Large-scale gravity wave characteristics simulated with a high-resolution global thermosphere-ionosphere model. J Geophys Res 116:A06303. doi:10.1029/2010JA015629

    Google Scholar 

  • Goncharenko L, Zhang SR (2008) Ionospheric signatures of sudden stratospheric warming: ion temperature at middle latitude. Geophys Res Lett 35:L21103. doi:10.1029/2008GL035684

    Article  Google Scholar 

  • Goncharenko LP, Coster AJ, Chau JL, Valladares CE (2010) Impact of sudden stratospheric warmings on equatorial ionization anomaly. J Geophys Res 115:A00G07. doi:10.1029/2010JA015400

  • Goncharenko LP, Coster AJ, Plumb RA, Domeisen DIV (2012) The potential role of stratospheric ozone in the stratosphere-ionosphere coupling during stratospheric warmings. J Geophys Res 39:L08101. doi:10.1029/2012GL051261

    Google Scholar 

  • Goncharenko LP, Hsu VW, Brum CGM, Zhang SR, Fentzke JT (2013) Wave signatures in the midlatitude ionosphere during a sudden stratospheric warming of January 2010. J Geophys Res Space Phys 118: doi:10.1029/2012JA018251

  • Helmholtz H (1858) über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegunen entsprechen. J fur die reine und angewandte Mathematik 25–55

    Google Scholar 

  • Holton JR (1976) A semi-spectral numerical model for wave-mean flow interactions in the stratosphere: application to sudden stratospheric warmings. J Atmos Sci 33:1639–1649

    Article  Google Scholar 

  • Holton JR (1980) The dynamics of stratospheric warmings. Ann Rev Earth Planet Sci 8:169–190

    Article  Google Scholar 

  • Holton JR, Hakim GJ (2012) An introduction to dynamic meteorology, 5th edn. Academic Press, London

    Google Scholar 

  • Holton JR, Wehrbein WM (1980) A numerical model of the zonal mean circulation of the middle atmosphere. Pure Appl Geophys 118:284–306

    Article  Google Scholar 

  • Jin H, Miyoshi Y, Fujiwara H, Shinagawa H, Terada K, Terada N, Ishii M, Otsuka Y, Saito A (2011) Vertical connection from the tropospheric activities to the ionospheric longitudinal structure simulated by a new Earth’s whole atmosphere-ionosphere coupled model. J Geophys Res Space Phys 116(A1): doi:10.1029/2010JA015925, http://dx.doi.org/10.1029/2010JA015925

  • Jonah OF, de Paula ER, Kherani EA, Dutra SLG, Paes RR (2014) Atmospheric and ionospheric response to sudden stratospheric warming of January 2013. J Geophys Res Space Phys 119(6):4973–4980. doi:10.1002/2013JA019491, http://dx.doi.org/10.1002/2013JA019491

  • Kleppner D, Kolenkow RJ (1973) An introduction to mechanics. McGraw-Hill, New York

    Google Scholar 

  • Kurihara J, Ogawa Y, Oyama S, Nozawa S, Tsutsumi M, Hall CM, Tomikawa Y, Fujii R (2010) Links between a stratospheric sudden warming and thermal structures and dynamics in the high-latitude mesosphere, lower thermosphere, and ionosphere. Geophys Res Lett 37:L13806. doi:10.1029/2010GL043643

    Google Scholar 

  • Lamb H (1932) Hydrodynamics, 6th edn. Dover, originally published as Treatise on the mathermatical theory of the motion of fluids in 1879

    Google Scholar 

  • Laštovička J (2006) Forcing of the ionosphere by waves from below. J Atmos Sol-Terr Phys 68: 479–497

    Google Scholar 

  • Liebermann R (1999) Eliassen-palm fluxes of the 2-day wave. J Atmos Sci 56:2846–2861

    Article  Google Scholar 

  • Limpasuvan V, Thompson DWJ, Hartmann DL (2004) The life cycle of the northern hemisphere sudden stratospheric warmings. J Clim 17:2584–2596

    Article  Google Scholar 

  • Liu H, Jin H, Miyoshi Y, Fujiwara H, Shinagawa H (2013) Upper atmosphere response to stratosphere sudden warming: local time and height dependence simulated by GAIA model. Geophys Res Lett 40: doi:10.1002/grl.50146

  • Manney GL, Krüger K, Sabutis JL, Sena SA, Pawson S (2005) The remarkable 2003–2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s. J Geophys Res 110:D04107. doi:10.1029/2004JD005367

    Google Scholar 

  • Matsuno T (1971) A dynamical model of the stratospheric sudden warming. J Atmos Sci 28:1479–1494

    Article  Google Scholar 

  • Mengel JG, Mayr HG, Chan KL, Hines CO, Reddy CA, Arnold NF (1995) Equatorial oscillations in the middle atmosphere generated by small scale gravity waves. Geophys Res Lett 22:3027–3030

    Article  Google Scholar 

  • Miyoshi Y, Fujiwara H, Jin H, Shinagawa H (2014) A global view of gravity waves in the thermosphere simulated by a general circulation model. J Geophys Res Space Phys 119:5807–5820. doi:10.1002/A019848

    Article  Google Scholar 

  • Palmer TN (1981) Diagnostic study of a wavenumber-2 stratospheric sudden warming in a transformed euleraian-mean formalism. J Atmos Sci 38:844–855

    Article  Google Scholar 

  • Pancheva D, Mukhtarov P (2011) Stratospheric warmings: the atmosphere-ionosphere coupling paradigm. J Atmos Sol-Terr Phys 73:1697–1702

    Article  Google Scholar 

  • Pedatella NM, Forbes JM (2010) Evidence for stratosphere sudden warming-ionosphere coupling due to vertically propagating tides. Geophys Res Lett 37:L11104. doi:10.1029/2010GL043560

    Google Scholar 

  • Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press, Cambridge

    Google Scholar 

  • Ridley AJ, Deng Y, Tóth G (2006) The global ionosphere-thermosphere model. J Atmos Sol-Terr Phys 68:839–864

    Article  Google Scholar 

  • Scherhag R (1952) Die explosionsartige Stratosphärenerwärmung des Spätwinters 1951–1952. Ber Deut Wetterdienstes 6:51–63

    Google Scholar 

  • Schoeberl MR (1978) Stratospheric warmings: observation and theory. Rev Geophys 16(4):521–538

    Article  Google Scholar 

  • Schoeberl MR, Strobel DF (1978) The zonally averaged circulation of the middle atmosphere. J Atmos Sci 35:577–591

    Article  Google Scholar 

  • Smith AK (2012) Global dynamics of the MLT. Surv Geophys 33: doi:10.1007/s10712-012-9196-9

  • Smith RW (2000) The global-scale effect of small-scale thermospheric disturbances. J Atmos Sol-Terr Phys 62:1623–1628

    Google Scholar 

  • Thurairajah B, Collins RL, Harvey VL, Lieberman RS, Gerding M, Mizutani K, Livingston JM (2010) Gravity wave activity in the Arctic stratosphere and mesosphere during the 2007–2008 and 2008–2009 stratospheric sudden warming events. J Geophys Res 115:D00N06. doi:10.1029/2010JD014125

  • Yiğit E, Medvedev AS (2012) Gravity waves in the thermosphere during a sudden stratospheric warming. Geophys Res Lett 39:L21101. doi:10.1029/2012GL053812

    Google Scholar 

  • Yiğit E, Medvedev AS (2015) Internal wave coupling processes in Earth’s atmosphere. Adv Space Res 55:983–1003. doi:10.1016/j.asr.2014.11.020, http://www.sciencedirect.com/science/article/pii/S0273117714007236

  • Yiğit E, Ridley AJ (2011) Role of variability in determining the vertical wind speeds and structure. J Geophys Res 116:A12305. doi:10.1029/2011JA016714

    Article  Google Scholar 

  • Yiğit E, Aylward AD, Medvedev AS (2008) Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: sensitivity study. J Geophys Res 113:D19106. doi:10.1029/2008JD010135

    Article  Google Scholar 

  • Yiğit E, Medvedev AS, England SL, Immel TJ (2014) Simulated variability of the high-latitude thermosphere induced by small-scale gravity waves during a sudden stratospheric warming. J Geophys Res Space Phys 119: doi:10.1002/2013JA019283

  • Yuan T, Thurairajah B, She CY, Chandran A, Collins RL, Krueger DA (2012) Wind and temperature response of midlatitude mesopause region to the 2009 sudden stratospheric warming. J Geophys Res 117:D09114. doi:10.1029/2011JD017142

    Google Scholar 

  • Zülicke C, Becker E (2013) The structure of the mesosphere during sudden stratospheric warmings in a global circulation model. J Geophys Res Atmos 118: doi:10.1002/jgrd.50219

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdal Yiğit .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Yiğit, E. (2015). Atmospheric Circulation and Dynamical Processes. In: Atmospheric and Space Sciences: Neutral Atmospheres. SpringerBriefs in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-21581-5_6

Download citation

Publish with us

Policies and ethics