Skip to main content

Polyols and Polyurethanes from Vegetable Oils and Their Derivatives

  • Chapter
  • First Online:
Bio-based Polyols and Polyurethanes

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

Vegetable oils and their derivatives have been widely used for the production of various polymers including polyols and polyurethanes. Vegetable oil derivatives, such as fatty acids, fatty acid esters, and crude glycerol, can be obtained via hydrolysis or transesterification of vegetable oils. Polyols and polyurethanes with properties comparable to those of petroleum-based analogs have been prepared from vegetable oils and their derivatives for various applications such as foams, coatings, adhesives, etc. This chapter reviews the structures and compositions of vegetable oils and their derivatives, synthetic methods of producing polyols from vegetable oils and their derivatives, properties of these polyols, and performance and applications of the resulting polyurethanes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pfister DP, Xia Y, Larock RC (2011) Recent advances in vegetable oil-based polyurethanes. Chem Sus Chem 4:703–717

    CAS  Google Scholar 

  2. Petrović ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48:109–155

    Google Scholar 

  3. USDA-FAS (2013) Production, supply and distribution online. http://apps.fas.usda.gov/psdonline/psdHome.aspx. Accessed Mar 2015

  4. Babb DA (2012) Polyurethanes from renewable resources. In: Synthetic biodegradable polymers. Springer, Berlin

    Google Scholar 

  5. Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26:338–348

    CAS  Google Scholar 

  6. Hu S, Luo X, Wan C, Li Y (2012) Characterization of crude glycerol from biodiesel plants. J Agr Food Chem 60:5915–5921

    CAS  Google Scholar 

  7. Pachauri N, He B (2006) Value-added utilization of crude glycerol from biodiesel production: a survey of current research activities. In: Proceedings of the ASABE annual international meeting 9

    Google Scholar 

  8. Hu S, Wan C, Li Y (2012) Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw. Bioresour Technol 103:227–233

    CAS  Google Scholar 

  9. Luo X, Hu S, Zhang X, Li Y (2013) Thermochemical conversion of crude glycerol to biopolyols for the production of polyurethane foams. Bioresour Technol 139:323–329

    CAS  Google Scholar 

  10. Luo X, Li Y (2014) Synthesis and characterization of polyols and polyurethane foams from PET waste and crude glycerol. J Polym Environ 22:318–328

    CAS  Google Scholar 

  11. Hu S, Luo X, Li Y (2014) Production of polyols and waterborne polyurethane dispersions from biodiesel-derived crude glycerol. J Appl Polym Sci. doi:10.1002/app.41425

    Google Scholar 

  12. Li C, Luo X, Li T, Tong X, Li Y (2014) Polyurethane foams based on crude glycerol-derived biopolyols: one-pot preparation of biopolyols with branched fatty acid ester chains and its effects on foam formation and properties. Polymer 55:6529–6538

    CAS  Google Scholar 

  13. Pan X, Webster DC (2012) New biobased high functionality polyols and their use in polyurethane coatings. ChemSusChem 5:419–429

    CAS  Google Scholar 

  14. Sinadinović-Fišer S, Janković M, Petrović ZS (2001) Kinetics of in situ epoxidation of soybean oil in bulk catalyzed by ion exchange resin. J Am Oil Chem Soc 78:725–731

    Google Scholar 

  15. Petrović ZS, Zlatanić A, Lava CC, Sinadinović-Fišer S (2002) Epoxidation of soybean oil in toluene with peroxoacetic and peroxoformic acids-kinetics and side reactions. Eur J Lipid Sci Tech 104:293–299

    Google Scholar 

  16. Kong X, Liu G, Curtis JM (2012) Novel polyurethane produced from canola oil based poly(ether ester) polyols: synthesis, characterization and properties. Eur Polym J 48:2097–2106

    CAS  Google Scholar 

  17. Cai C, Dai H, Chen R, Su C, Xu X, Zhang S, Yang L (2008) Studies on the kinetics of in situ epoxidation of vegetable oils. Eur J Lipid Sci Tech 110:341–346

    CAS  Google Scholar 

  18. Vlček T, Petrović ZS (2006) Optimization of the chemoenzymatic epoxidation of soybean oil. J Am Oil Chem Soc 83:247–252

    Google Scholar 

  19. Miao S, Zhang S, Su Z, Wang P (2010) A novel vegetable oil-lactate hybrid monomer for synthesis of high-Tg polyurethanes. J Polym Sci Pol Chem 48:243–250

    CAS  Google Scholar 

  20. Rüsch gen Klaas M, Warwel S (1999) Complete and partial epoxidation of plant oils by lipase-catalyzed perhydrolysis. Ind Crop Prod 9:125–132

    Google Scholar 

  21. Rüsch gen Klaas M, Warwel S (1996) Chemoenzymatic epoxidation of unsaturated fatty acid esters and plant oils. J Am Oil Chem Soc 73:1453–1457

    Google Scholar 

  22. Dai H, Yang L, Lin B, Wang C, Shi G (2009) Synthesis and characterization of the different soy-based polyols by ring-opening of epoxidized soybean oil with methanol, 1, 2-ethanediol and 1,2-propanediol. J Am Oil Chem Soc 86:261–267

    CAS  Google Scholar 

  23. Guo A, Cho Y, Petrović ZS (2000) Structure and properties of halogenated and nonhalogenated soy-based polyols. J Polym Sci Polym Chem 38:3900–3910

    CAS  Google Scholar 

  24. Kiatsimkul PP, Suppes GJ, Hsieh Fh, Lozada Z, Tu YC (2008) Preparation of high hydroxyl equivalent weight polyols from vegetable oils. Ind Crop Prod 27:257–264

    CAS  Google Scholar 

  25. Wang CS, Yang LT, Ni BL, Shi G (2009) Polyurethane networks from different soy-based polyols by the ring-opening of epoxidized soybean oil with methanol, glycol, and 1,2-propanediol. J Appl Polym Sci 114:125–131

    CAS  Google Scholar 

  26. Caillol S, Desroches M, Boutevin G, Loubat C, Auvergne R, Boutevin B (2012) Synthesis of new polyester polyols from epoxidized vegetable oils and biobased acids. Eur J Lipid Sci Tech 114:1447–1459

    CAS  Google Scholar 

  27. Monteavaro LL, da Silva EO, Costa AP, Samios D, Gerbase AE, Petzhold CL (2005) Polyurethane networks from formiated soy polyols: synthesis and mechanical characterization. J Am Oil Chem Soc 82:365–371

    CAS  Google Scholar 

  28. Sharmin E, Ashraf SM, Ahmad S (2007) Synthesis, characterization, antibacterial and corrosion protective properties of epoxies, epoxy-polyols and epoxy-polyurethane coatings from linseed and Pongamia glabra seed oils. Int Biol Macromol 40:407–422

    CAS  Google Scholar 

  29. Hu YH, Gao Y, Wang DN, Hu CP, Zu S, Vanoverloop L, Randall D (2002) Rigid polyurethane foam prepared from a rape seed oil based polyol. J Appl Polym Sci 84:591–597

    CAS  Google Scholar 

  30. Zlatanić A, Lava C, Zhang W, Petrović ZS (2004) Effect of structure on properties of polyols and polyurethanes based on different vegetable oils. J Polym Sci Pol Phys 42:809–819

    Google Scholar 

  31. Ionescu M, Petrović ZS, Wan X (2007) Ethoxylated soybean polyols for polyurethanes. J Polym Environ 15:237–243

    CAS  Google Scholar 

  32. Guo Y, Hardesty JH, Mannari VM, Massingill JL Jr (2007) Hydrolysis of epoxidized soybean oil in the presence of phosphoric acid. J Am Oil Chem Soc 84:929–935

    CAS  Google Scholar 

  33. Miao S, Zhang S, Su Z, Wang P (2013) Synthesis of bio-based polyurethanes from epoxidized soybean oil and isopropanolamine. J Appl Polym Sci 127:1929–1936

    CAS  Google Scholar 

  34. Petrović ZS, Yang L, Zlatanić A, Zhang W, Javni I (2007) Network structure and properties of polyurethanes from soybean oil. J Appl Polym Sci 105:2717–2727

    Google Scholar 

  35. Wang C, Yang L, Ni B, Wang L (2009) Thermal and mechanical properties of cast polyurethane resin based on soybean oil. J Appl Polym Sci 112:1122–1127

    CAS  Google Scholar 

  36. Petrović ZS, Guo A, Zhang W (2000) Structure and properties of polyurethanes based on halogenated and nonhalogenated soy-polyols. J Polym Sci Polym Chem 38:4062–4069

    Google Scholar 

  37. Petrović ZS, Zhang W, Zlatanic A, Lava CC, Ilavskyý M (2002) Effect of OH/NCO molar ratio on properties of soy-based polyurethane networks. J Polym Environ 10:5–12

    Google Scholar 

  38. Guo A, Javni I, Petrović Z (2000) Rigid polyurethane foams based on soybean oil. J Appl Polym Sci 77:467–473

    CAS  Google Scholar 

  39. Tan S, Abraham T, Ference D, Macosko CW (2011) Rigid polyurethane foams from a soybean oil-based Polyol. Polymer 52:2840–2846

    CAS  Google Scholar 

  40. Tu Y-C, Kiatsimkul P, Suppes G, Hsieh F-H (2007) Physical properties of water-blown rigid polyurethane foams from vegetable oil-based polyols. J Appl Polym Sci 105:453–459

    CAS  Google Scholar 

  41. Das S, Dave M, Wilkes GL (2009) Characterization of flexible polyurethane foams based on soybean-based polyols. J Appl Polym Sci 112:299–308

    CAS  Google Scholar 

  42. Pawlik H, Prociak A (2012) Influence of palm oil-based polyol on the properties of flexible polyurethane foams. J Polym Environ 20:438–445

    CAS  Google Scholar 

  43. Zhang L, Jeon HK, Malsam J, Herrington R, Macosko CW (2007) Substituting soybean oil-based polyol into polyurethane flexible foams. Polymer 48:6656–6667

    CAS  Google Scholar 

  44. Rojek P, Prociak A (2012) Effect of different rapeseed-oil-based polyols on mechanical properties of flexible polyurethane foams. J Appl Polym Sci 125:2936–2945

    CAS  Google Scholar 

  45. Prociak A, Rojek P, Pawlik H (2012) Flexible polyurethane foams modified with natural oil based polyols. J Cell Plast 48:489–499

    CAS  Google Scholar 

  46. Lu Y, Larock RC (2008) Soybean-oil-based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties. Biomacromolecules 9:3332–3340

    CAS  Google Scholar 

  47. Lu Y, Larock RC (2007) New hybrid latexes from a soybean oil-based waterborne polyurethane and acrylics via emulsion polymerization. Biomacromolecules 8:3108–3114

    CAS  Google Scholar 

  48. Lu Y, Larock RC (2010) Aqueous cationic polyurethane dispersions from vegetable oils. ChemSusChem 3:329–333

    CAS  Google Scholar 

  49. Lu Y, Larock RC (2010) Soybean oil-based, aqueous cationic polyurethane dispersions: synthesis and properties. Prog Org Coat 69:31–37

    CAS  Google Scholar 

  50. Lu Y, Larock RC (2011) Synthesis and properties of grafted latices from a soybean oil-based waterborne polyurethane and acrylics. J Appl Polym Sci 119:3305–3314

    CAS  Google Scholar 

  51. Lu Y, Xia Y, Larock RC (2011) Surfactant-free core-shell hybrid latexes from soybean oil-based waterborne polyurethanes and poly(styrene-butyl acrylate). Prog Org Coat 71:336–342

    CAS  Google Scholar 

  52. Guo A, Demydov D, Zhang W, Petrović ZS (2002) Polyols and polyurethanes from hydroformylation of soybean oil. J Polym Environ 10:49–52

    CAS  Google Scholar 

  53. Petrović ZS, Guo A, Javni I, Cvetković I, Hong DP (2008) Polyurethane networks from polyols obtained by hydroformylation of soybean oil. Polym Int 57:275–281

    Google Scholar 

  54. Petrović ZS, Cvetković I, Milic J, Hong D, Javni I (2012) Hyperbranched polyols from hydroformylated methyl soyate. J Appl Polym Sci 125:2920–2928

    Google Scholar 

  55. Petrović ZS, Cvetković I, Hong D, Wan X, Zhang W, Abraham TW, Malsam J (2010) Vegetable oil-based triols from hydroformylated fatty acids and polyurethane elastomers. Eur J Lipid Sci Tech 112:97–102

    Google Scholar 

  56. Guo A, Zhang W, Petrović ZS (2006) Structure-property relationships in polyurethanes derived from soybean oil. J Mater Sci 41:4914–4920

    CAS  Google Scholar 

  57. Argyropoulos J, Popa P, Spilman G, Bhattacharjee D, Koonce W (2009) Seed oil based polyester polyols for coatings. J Coat Technol Res 6:501–508

    CAS  Google Scholar 

  58. Petrović ZS, Zhang W, Javni I (2005) Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis. Biomacromolecules 6:713–719

    Google Scholar 

  59. Narine SS, Yue J, Kong X (2007) Production of polyols from canola oil and their chemical identification and physical properties. J Am Oil Chem Soc 84:173–179

    CAS  Google Scholar 

  60. Kong X, Narine SS (2007) Physical properties of polyurethane plastic sheets produced from polyols from canola oil. Biomacromolecules 8:2203–2209

    CAS  Google Scholar 

  61. Benecke HP, Vijayendran BR, Garbark DB, Mitchell KP (2008) Low cost and highly reactive biobased polyols: a co-product of the emerging biorefinery economy. Clean-Soil Air Water 36:694–699

    CAS  Google Scholar 

  62. Tran P, Graiver D, Narayan R (2005) Ozone-mediated polyol synthesis from soybean oil. J Am Oil Chem Soc 82:653–659

    CAS  Google Scholar 

  63. Narine SS, Kong X, Bouzidi L, Sporns P (2007) Physical properties of polyurethanes produced from polyols from seed oils: I. Elastomers. J Am Oil Chem Soc 84:55–63

    CAS  Google Scholar 

  64. Narine SS, Kong X, Bouzidi L, Sporns P (2007) Physical properties of polyurethanes produced from polyols from seed oils: II. Foams. J Am Oil Chem Soc 84:65–72

    CAS  Google Scholar 

  65. Kong X, Narine SS (2008) Sequential interpenetrating polymer networks produced from vegetable oil based polyurethane and poly(methyl methacrylate). Biomacromolecules 9:2221–2229

    CAS  Google Scholar 

  66. Hojabri L, Kong X, Narine SS (2010) Novel long chain unsaturated diisocyanate from fatty acid: synthesis, characterization, and application in bio-based polyurethane. J Polym Sci Pol Chem 48:3302–3310

    CAS  Google Scholar 

  67. Hojabri L, Kong X, Narine SS (2009) Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization. Biomacromolecules 10:884–891

    CAS  Google Scholar 

  68. Desroches M, Escouvois M, Auvergne R, Caillol S, Boutevin B (2012) From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products. Polym Rev 52:38–79

    CAS  Google Scholar 

  69. Caillol S, Desroches M, Carlotti S, Auvergne R, Boutevin B (2012) Synthesis of new polyurethanes from vegetable oil by thiol-ene coupling. Green Mater 1:16–26

    Google Scholar 

  70. Desroches M, Caillol S, Lapinte V, Auvergne R, Boutevin B (2011) Synthesis of biobased polyols by thiol-ene coupling from vegetable oils. Macromolecules 44:2489–2500

    CAS  Google Scholar 

  71. Chuayjuljit S, Maungchareon A, Saravari O (2010) Preparation and properties of palm oil-based rigid polyurethane nanocomposite foams. J Reinf Plast Comp 29:218–225

    CAS  Google Scholar 

  72. Stirna U, Cabulis U, Beverte I (2008) Water-blown polyisocyanurate foams from vegetable oil polyols. J Cell Plast 44:139–160

    CAS  Google Scholar 

  73. Campanella A, Bonnaillie LM, Wool RP (2009) Polyurethane foams from soyoil-based polyols. J Appl Polym Sci 112:2567–2578

    CAS  Google Scholar 

  74. Can E, Küsefoglu S, Wool RP (2001) Rigid, thermosetting liquid molding resins from renewable resources. I. Synthesis and polymerization of soy oil monoglyceride maleates. J Appl Polym Sci 81:69–77

    CAS  Google Scholar 

  75. Yunus R, Fakhru’I-Razi A, Ooi TL, Biak DRA, Iyuke SE (2004) Kinetics of transesterification of palm-based methyl esters with trimethylolpropane. J Am Oil Chem Soc 81:497–503

    CAS  Google Scholar 

  76. Petrović ZS, Cvetković I, Hong D, Wan X, Zhang W, Abraham T, Malsam J (2008) Polyester polyols and polyurethanes from ricinoleic acid. J Appl Polym Sci 108:1184–1190

    Google Scholar 

  77. Gryglewicz S, Piechocki W, Gryglewicz G (2003) Preparation of polyol esters based on vegetable and animal fats. Bioresour Technol 87:35–39

    CAS  Google Scholar 

  78. Dutta N, Karak N, Dolui SK (2004) Synthesis and characterization of polyester resins based on Nahar seed oil. Prog Org Coat 49:146–152

    CAS  Google Scholar 

  79. Dutta S, Karak N (2006) Effect of the NCO/OH ratio on the properties of Mesua Ferrea L. seed oil-modified polyurethane resins. Polym Int 55:49–56

    CAS  Google Scholar 

  80. Bakare IO, Pavithran C, Okieimen FE, Pillai CKS (2008) Synthesis and characterization of rubber-seed-oil-based polyurethanes. J Appl Polym Sci 109:3292–3301

    CAS  Google Scholar 

  81. Bhabhe MD, Athawale VD (1998) Chemoenzymatic synthesis of urethane oil based on special functional group oil. J Appl Polym Sci 69:1451–1458

    CAS  Google Scholar 

  82. Tanaka R, Hirose S, Hatakeyama H (2008) Preparation and characterization of polyurethane foams using a palm oil-based polyol. Bioresour Technol 99:3810–3816

    CAS  Google Scholar 

  83. Gite VV, Kulkarni RD, Hundiwale DG, Kapadi UR (2006) Synthesis and characterisation of polyurethane coatings based on trimer of isophorone diisocyanate (IPDI) and monoglycerides of oils. Surf Coat Int Pt B-C 89:117–122

    CAS  Google Scholar 

  84. Dutta S, Karak N (2005) Synthesis, characterization of poly (urethane amide) resins from Nahar seed oil for surface coating applications. Prog Org Coat 53:147–152

    CAS  Google Scholar 

  85. Lee CS, Ooi TL, Chuah CH, Ahmad S (2007) Synthesis of palm oil-based diethanolamides. J Am Oil Chem Soc 84:945–952

    CAS  Google Scholar 

  86. Palanisamy A, Karuna MSL, Satyavani T, Kumar DR (2011) Development and characterization of water-blown polyurethane foams from diethanolamides of karanja oil. J Am Oil Chem Soc 88:541–549

    CAS  Google Scholar 

  87. Palanisamy A, Rao BS, Mehazabeen S (2011) Diethanolamides of castor oil as polyols for the development of water-blown polyurethane foam. J Polym Environ 19:698–705

    CAS  Google Scholar 

  88. Khoe TH, Frankel EN (1976) Rigid polyurethane foams from diethanolamides of carboxylated oils and fatty acids. J Am Oil Chem Soc 53:17–19

    CAS  Google Scholar 

  89. Yadav S, Zafar F, Hasnat A, Ahmad S (2009) Poly(urethane fatty amide) resin from linseed oil-a renewable resource. Prog Org Coat 64:27–32

    CAS  Google Scholar 

  90. Meshram PD, Puri RG, Patil AL, Gite VV (2013) High performance moisture cured poly(ether-urethane) amide coatings based on renewable resource (cottonseed oil). J Coat Technol Res 10:331–338

    CAS  Google Scholar 

  91. Trân NB, Vialle J, Pham QT (1997) Castor oil-based polyurethanes: 1. Structural characterization of castor oil-nature of intact glycerides and distribution of hydroxyl groups. Polymer 38:2467–2473

    Google Scholar 

  92. Mutlu H, Meier MA (2010) Castor oil as a renewable resource for the chemical industry. Eur J Lipid Sci Tech 112:10–30

    CAS  Google Scholar 

  93. Stirna U, Lazdina B, Vilsone D, Lopez MJ, del Vargas-Garcia Carmen M, Suárez-Estrella F, Moreno J (2012) Structure and properties of the polyurethane and polyurethane foam synthesized from castor oil polyols. J Cell Plast 48:476–488

    CAS  Google Scholar 

  94. Corcuera MA, Rueda L, Fernandez dArlas B, Arbelaiz A, Marieta C, Mondragon I, Eceiza A (2010) Microstructure and properties of polyurethanes derived from castor oil. Polym Degrad Stabil 95:2175–2184

    Google Scholar 

  95. Lyon CK, Garrett VH, Goldblatt LA (1962) Solvent-blown, rigid urethane foams from low cost castor oil-polyol mixtures. J Am Oil Chem Soc 39:69–71

    CAS  Google Scholar 

  96. Yeganeh H, Mehdizadeh MR (2004) Synthesis and properties of isocyanate curable millable polyurethane elastomers based on castor oil as a renewable resource polyol. Eur Polym J 40:1233–1238

    CAS  Google Scholar 

  97. Yeganeh H, Shamekhi MA (2006) Novel polyurethane insulating coatings based on polyhydroxyl compounds, derived from glycolysed PET and castor oil. J Appl Polym Sci 99:1222–1233

    CAS  Google Scholar 

  98. Yeganeh H, Moeini HR (2007) Novel polyurethane electrical insulator coatings based on amide-ester-ether polyols derived from castor oil and re-cycled poly(ethylene terphthalate). High Perform Polym 19:113–126

    CAS  Google Scholar 

  99. Athawale V, Kolekar S (1998) Interpenetrating polymer networks based on polyol modified castor oil polyurethane and polymethyl methacrylate. Eur Polym J 34:1447–1451

    CAS  Google Scholar 

  100. Das SK, Lenka S (2000) Interpenetrating polymer networks composed of castor oil-based polyurethane and 2-hydroxy-4-methacryloyloxy acetophenone. J Appl Polym Sci 75:1487–1492

    CAS  Google Scholar 

  101. Xie HQ, Guo JS (2002) Room temperature synthesis and mechanical properties of two kinds of elastomeric interpenetrating polymer networks based on castor oil. Eur Polym J 38:2271–2277

    CAS  Google Scholar 

  102. Chen S, Wang Q, Wang T, Pei X (2011) Preparation, damping and thermal properties of potassium titanate whiskers filled castor oil-based polyurethane/epoxy interpenetrating polymer network composites. Mater Des 32:803–807

    CAS  Google Scholar 

  103. Çayli G, Küsefoğlu S (2008) Biobased polyisocyanates from plant oil triglycerides: synthesis, polymerization, and charaterization. J Appl Polym Sci 109:2948–2955

    Google Scholar 

  104. Junming X, Jianchun J, Jing L (2012) Preparation of polyester polyols from unsaturated fatty acid. J Appl Polym Sci 126:1377–1384

    Google Scholar 

  105. Hojabri L, Kong X, Narine SS (2010) Functional thermoplastics from linear diols and diisocyanates produced entirely from renewable lipid sources. Biomacromolecules 11:911–918

    CAS  Google Scholar 

  106. González-Paz RJ, Lluch C, Lligadas G, Ronda JC, Galià M, Cádiz V (2011) A green approach toward oleic- and undecylenic acid-derived polyurethanes. J Polym Sci Pol Chem 49:2407–2416

    Google Scholar 

  107. Desroches M, Caillol S, Auvergne R, Boutevin B (2012) Synthesis of pseudo-telechelic diols by transesterification and thiol-ene coupling. Eur J Lipid Sci Tech 114:84–91

    CAS  Google Scholar 

  108. Palaskar DV, Boyer A, Cloutet E, Le Meins J-F, Gadenne B, Alfos C, Farcet C, Cramail H (2012) Original diols from sunflower and ricin oils: synthesis, characterization, and use as polyurethane building blocks. J Polym Sci Pol Chem 50:1766–1782

    CAS  Google Scholar 

  109. Tolvanen P, Mäki-Arvela P, Kumar N, Eränen K, Sjöholm R, Hemming J, Holmbom B, Salmi T, Murzin DY (2007) Thermal and catalytic oligomerisation of fatty acids. Appl Cata A-Gen 330:1–11

    CAS  Google Scholar 

  110. Liu X, Xu K, Liu H, Cai H, Su J, Fu Z, Guo Y, Chen M (2011) Preparation and properties of waterborne polyurethanes with natural dimer fatty acids based polyester polyol as soft segment. Prog Org Coat 72:612–620

    CAS  Google Scholar 

  111. Lligadas G, Ronda JC, Galià M, Cádiz V (2007) Polyurethane networks from fatty-acid-based aromatic triols: synthesis and characterization. Biomacromolecules 8:1858–1864

    CAS  Google Scholar 

  112. Lligadas G, Ronda JC, Galià M, Biermann U, Metzger JO (2006) Synthesis and characterization of polyurethanes from epoxidized methyl oleate based polyether polyols as renewable resources. J Polym Sci Pol Chem 44:634–645

    CAS  Google Scholar 

  113. Lligadas G, Ronda JC, Galià M, Cádiz V (2006) Novel silicon-containing polyurethanes from vegetable oils as renewable resources synthesis and properties. Biomacromolecules 7:2420–2426

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yebo Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Li, Y., Luo, X., Hu, S. (2015). Polyols and Polyurethanes from Vegetable Oils and Their Derivatives. In: Bio-based Polyols and Polyurethanes. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-21539-6_2

Download citation

Publish with us

Policies and ethics