Skip to main content

Introduction to Bio-based Polyols and Polyurethanes

  • Chapter
  • First Online:
Book cover Bio-based Polyols and Polyurethanes

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

Polyurethanes (PUs) are one of the most versatile polymers and are widely used in our daily lives for rigid and flexible foams, coatings, films, and other products. PUs are generally synthesized through reactions between isocyanates and polyols. A brief overview of the chemical structures, origin, synthetic methods, and properties of polyols and isocyanates is given in this chapter. Currently, most polyols are petroleum-based, but increasing concerns over the depletion of petroleum resources, environment, and sustainability have led to considerable efforts to develop bio-based polyols and PUs from renewable resources. Bio-based polyols and isocyanates for the production of bio-based PUs are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayer O, Siefken W, Rinke H, Orthner L, Schild H (1937) A process for the production of polyurethanes and polyureas. German Patent DRP 728981

    Google Scholar 

  2. Marketsandmarkets (2013) Polyurethane (PU) foams market by types (rigid & flexible), end-user industries (bedding & furniture, building & construction, electronics, automotives, footwear, packaging, & others), & geography (North America, West Europe, Asia-Pacific & Row)-global trends & forecasts to 2018. http://www.marketsandmarkets.com/PressReleases/polyurethane-foams.asp. Accessed Mar 2015

  3. Mahendran AR, Aust N, Wuzella G, Müller U, Kandelbauer A (2012) Bio-based non-isocyanate urethane derived from plant oil. J Polym Environ 20:926–931

    Article  CAS  Google Scholar 

  4. Fleischer M, Blattmann H, Mülhaupt R (2013) Glycerol-, pentaerythritol-and trimethylolpropane-based polyurethanes and their cellulose carbonate composites prepared via the non-isocyanate route with catalytic carbon dioxide fixation. Green Chem 15:934–942

    Article  CAS  Google Scholar 

  5. Palaskar DV, Boyer A, Cloutet E, Alfos C, Cramail H (2010) Synthesis of biobased polyurethane from oleic and ricinoleic acids as the renewable resources via the AB-type self-condensation approach. Biomacromolecules 11:1202–1211

    Article  CAS  Google Scholar 

  6. Deepa P, Jayakannan M (2008) Solvent-free and nonisocyanate melt transurethane reaction for aliphatic polyurethanes and mechanistic aspects. J polym Sci A Polym Chem 46:2445–2458

    Article  CAS  Google Scholar 

  7. Ionescu M (2005) Chemistry and technology of polyols for polyurethanes. Rapra Technology, Ltd., Shropshire

    Google Scholar 

  8. Szycher M (1999) Szycher’s handbook of polyurethanes. CRC Press, Florida

    Google Scholar 

  9. Fink JK (2013) Reactive polymers fundamentals and applications: a concise guide to industrial polymers, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  10. Randall D, Lee S (2002) The polyurethanes book. John Wiley & Sons Ltd., UK

    Google Scholar 

  11. Pfister DP, Xia Y, Larock RC (2011) Recent advances in vegetable oil-based polyurethanes. ChemSusChem 4:703–717

    Article  CAS  Google Scholar 

  12. Petrović ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48:109–155

    Article  Google Scholar 

  13. Babb DA (2012) Polyurethanes from renewable resources. Synthetic biodegradable polymers. Springer, Berlin, pp 315–360

    Google Scholar 

  14. Lligadas G, Ronda JC, Galià M, Cádiz V (2010) Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art. Biomacromolecules 11:2825–2835

    Article  CAS  Google Scholar 

  15. Lligadas G, Ronda JC, Galiá M, Cádiz V (2010) Oleic and undecylenic acids as renewable feedstocks in the synthesis of polyols and polyurethanes. Polymer 2:440–453

    Article  CAS  Google Scholar 

  16. Lligadas G, Ronda JC, Galià M, Biermann U, Metzger JO (2006) Synthesis and characterization of polyurethanes from epoxidized methyl oleate based polyether polyols as renewable resources. J polym Sci A Polym Chem 44:634–645

    Article  CAS  Google Scholar 

  17. Petrović ZS, Cvetković I, Milić J, Hong D, Javni I (2012) Hyperbranched polyols from hydroformylated methyl soyate. J Appl Polym Sci 125:2920–2928

    Article  Google Scholar 

  18. Luo X, Hu S, Zhang X, Li Y (2013) Thermochemical conversion of crude glycerol to biopolyols for the production of polyurethane foams. Bioresour Technol 139:323–329

    Article  CAS  Google Scholar 

  19. Hu S, Luo X, Li Y (2014) Polyols and polyurethanes from the liquefaction of lignocellulosic biomass. ChemSusChem 7:66–72

    Article  CAS  Google Scholar 

  20. Aniceto JP, Portugal I, Silva CM (2012) Biomass-based polyols through oxypropylation reaction. ChemSusChem 5:1358–1368

    Article  CAS  Google Scholar 

  21. Hu S, Wan C, Li Y (2012) Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw. Bioresour Technol 103:227–233

    Article  CAS  Google Scholar 

  22. Mu Y, Wan X, Han Z, Peng Y, Zhong S (2012) Rigid polyurethane foams based on activated soybean meal. J Appl Polym Sci 124:4331–4338

    Article  CAS  Google Scholar 

  23. DFG (2012) 4,4-Methylene diphenyl isocyanate (MDI) and polymeric MDI (PMDI) [MAK Value Documentation, 1997]. The MAK-Collection for Occupational Health and Safety Wiley-VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  24. Sharmin E, Zafar F (2012) Polyurethane: an introduction. InTech. Open Access Publisher

    Google Scholar 

  25. Hojabri L, Kong X, Narine SS (2010) Novel long chain unsaturated diisocyanate from fatty acid: synthesis, characterization, and application in bio-based polyurethane. J polym Sci A Polym Chem 48:3302–3310

    Article  CAS  Google Scholar 

  26. Javni I, Zhang W, Petrović ZS (2003) Effect of different isocyanates on the properties of soy-based polyurethanes. J Appl Polym Sci 88:2912–2916

    Article  CAS  Google Scholar 

  27. Coady CJ, Krajewski JJ, Bishop TE (1986) Polyacrylated oligomers in ultraviolet curable optical fiber coatings. US Patent 4,608,409

    Google Scholar 

  28. Bishop TE, Coady CJ, Zimmerman JM (1986) Ultraviolet curable buffer coatings for optical glass fiber based on long chain oxyalkylene diamines. US Patent 4,609,718

    Google Scholar 

  29. Kamal MR, Kuder RC (1972) Diisocyanates. US Patent 3,691,225

    Google Scholar 

  30. Hojabri L, Kong X, Narine SS (2009) Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization. Biomacromolecules 10:884–891

    Article  CAS  Google Scholar 

  31. More AS, Lebarbé T, Maisonneuve L, Gadenne B, Alfos C, Cramail H (2013) Novel fatty acid based di-isocyanates towards the synthesis of thermoplastic polyurethanes. Eur Polym J 49:823–833

    Article  CAS  Google Scholar 

  32. Çayli G, Küsefoğlu S (2008) Biobased polyisocyanates from plant oil triglycerides: synthesis, polymerization, and characterization. J Appl Polym Sci 109:2948–2955

    Article  Google Scholar 

  33. Çayli G, Küsefoğlu S (2010) A simple one-step synthesis and polymerization of plant oil triglyceride iodo isocyanates. J Appl Polym Sci 116:2433–2440

    Google Scholar 

  34. Delebecq E, Pascault J-P, Boutevin B, Ganachaud F (2012) On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev 113:80–118

    Article  Google Scholar 

  35. Pandya MV, Deshpande DD, Hundiwale DG (1986) Effect of diisocyanate structure on viscoelastic, thermal, mechanical and electrical properties of cast polyurethanes. J Appl Polym Sci 32:4959–4969

    Article  CAS  Google Scholar 

  36. Tu Y-C, Suppes GJ, Hsieh F-H (2008) Water-blown rigid and flexible polyurethane foams containing epoxidized soybean oil triglycerides. J Appl Polym Sci 109:537–544

    Article  CAS  Google Scholar 

  37. Coutinho F, Delpech MC, Alves LS (2001) Anionic waterborne polyurethane dispersions based on hydroxyl-terminated polybutadiene and poly (propylene glycol): synthesis and characterization. J Appl Polym Sci 80:566–572

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yebo Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Li, Y., Luo, X., Hu, S. (2015). Introduction to Bio-based Polyols and Polyurethanes. In: Bio-based Polyols and Polyurethanes. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-21539-6_1

Download citation

Publish with us

Policies and ethics