Skip to main content

Early Experience and Auditory Development in Songbirds

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 64))

Abstract

Vocal communication is critical for life in a wide range of vertebrate species. Mammals, birds, frogs, and fishes rely on auditory processing to perceive the vocal signals of others in the environment and gain social information such as the presence of potential mates or predators. Conspecific vocalizations convey information on sex, age, individual identity, and behavioral state. The importance of vocal communication for social behavior places auditory processing at the forefront of brain functions that directly impact fitness. Young humans and songbirds require experience of adult vocal communication to develop their own perceptual and vocal skills. Studies on songbird vocal development and auditory processing are revealing how early experience and developmental plasticity interact to specialize central auditory function for vocal communication. This chapter reviews research findings that shed light on the role of early song experience in shaping adult song perception and the auditory coding of songs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amin, N., Doupe, A., & Theunissen, F. E. (2007). Development of selectivity for natural sounds in the songbird auditory forebrain. Journal of Neurophysiology, 97(5), 3517–3531.

    Article  PubMed  Google Scholar 

  • Atencio, C. A., & Schreiner, C. E. (2008). Spectrotemporal processing differences between auditory cortical fast-spiking and regular-spiking neurons. The Journal of Neuroscience, 28(15), 3897–3910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atencio, C. A., & Schreiner, C. E. (2010). Laminar diversity of dynamic sound processing in cat primary auditory cortex. Journal of Neurophysiology, 103(1), 192–205.

    Article  PubMed  Google Scholar 

  • Beecher, M. D., & Brenowitz, E. A. (2005). Functional aspects of song learning in songbirds. Trends in Ecology & Evolution, 20(3), 143–149.

    Article  Google Scholar 

  • Bennur, S., Tsunada, J., Cohen, Y. E., & Liu, R. C. (2013). Understanding the neurophysiological basis of auditory abilities for social communication: A perspective on the value of ethological paradigms. Hearing Research, 305, 3–9.

    Article  PubMed  Google Scholar 

  • Bolhuis, J. J., Zijlstra, G. G., den Boer-Visser, A. M., & Van Der Zee, E. A. (2000). Localized neuronal activation in the zebra finch brain is related to the strength of song learning. Proceedings of the National Academy of Sciences of the USA, 97(5), 2282–2285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolhuis, J. J., Hetebrij, E., Den Boer-Visser, A. M., De Groot, J. H., & Zijlstra, G. G. (2001). Localized immediate early gene expression related to the strength of song learning in socially reared zebra finches. European Journal of Neuroscience, 13(11), 2165–2170.

    Article  CAS  PubMed  Google Scholar 

  • Braaten, R. F., & Reynolds, K. (1999). Auditory preference for conspecific song in isolation-reared zebra finches. Animal Behaviour, 58(1), 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Braaten, R. F., Petzoldt, M., & Colbath, A. (2006). Song perception during the sensitive period of song learning in zebra finches (Taeniopygia guttata). Journal of Comparative Psychology, 120(2), 79–88.

    Article  PubMed  Google Scholar 

  • Brenowitz, E. A., & Beecher, M. D. (2005). Song learning in birds: Diversity and plasticity, opportunities and challenges. Trends in Neuroscience, 28(3), 127–132.

    Article  CAS  Google Scholar 

  • Butler, A. B., Reiner, A., & Karten, H. J. (2011). Evolution of the amniote pallium and the origins of mammalian neocortex. Annals of the New York Academy of Sciences, 1225, 14–27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Calabrese, A., & Woolley, S. M. (2015). Coding principles of the canonical cortical microcircuit in the avian brain. Proceedings of the National Academy of Sciences of the USA, 112(11), 3517–3522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catchpole, C. K., & Slater, P. J. B. (2008). Bird song: Biological themes and variations, 2nd ed. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Cate, C. T., & Mug, G. (1984). The development of mate choice in zebra finch females. Behaviour, 90(1–3), 125–150.

    Article  Google Scholar 

  • Clayton, N. S. (1988). Song learning and mate choice in estrildid finches raised by 2 species. Animal Behaviour, 36, 1589–1600.

    Article  Google Scholar 

  • Cousillas, H., Richard, J. P., Mathelier, M., Henry, L., et al. (2004). Experience-dependent neuronal specialization and functional organization in the central auditory area of a songbird. European Journal of Neuroscience, 19(12), 3343–3352.

    Article  PubMed  Google Scholar 

  • Cousillas, H., George, I., Mathelier, M., Richard, J. P., et al. (2006). Social experience influences the development of a central auditory area. Naturwissenschaften, 93(12), 588–596.

    Article  CAS  PubMed  Google Scholar 

  • Cousillas, H., George, I., Henry, L., Richard, J. P., & Hausberger, M. (2008). Linking social and vocal brains: Could social segregation prevent a proper development of a central auditory area in a female songbird? PLoS ONE, 3(5), e2194.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dooling, R. J. (1982). Ontogeny of song recognition in birds. American Zoologist, 22, 571–580.

    Article  Google Scholar 

  • Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: Common themes and mechanisms. Annual Review of Neuroscience, 22, 567–631.

    Article  CAS  PubMed  Google Scholar 

  • Dugas-Ford, J., Rowell, J. J., & Ragsdale, C. W. (2012). Cell-type homologies and the origins of the neocortex. Proceedings of the National Academy of Sciences of the USA, 109(42), 16974–16979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eales, L. A. (1985). Song learning in zebra finches: Some effects of song model availability on what is learnt and when. Animal Behaviour, 33, 1293–1300.

    Article  Google Scholar 

  • Fortune, E. S., & Margoliash, D. (1992). Cytoarchitectonic organization and morphology of cells of the field-L complex in male zebra finches (Taenopygia guttata). The Journal of Comparative Neurology, 325(3), 388–404.

    Article  CAS  PubMed  Google Scholar 

  • George, I., Cousillas, H., Vernier, B., Richard, J. P., et al. (2004). Sound processing in the auditory-cortex homologue of songbirds: Functional organization and developmental issues. Journal of Physiology Paris, 98(4–6), 385–394.

    Article  CAS  Google Scholar 

  • George, I., Alcaix, S., Henry, L., Richard, J. P., et al. (2010). Neural correlates of experience-induced deficits in learned vocal communication. PLoS ONE, 5(12), e14347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleich, O., & Langemann, U. (2011). Auditory capabilities of birds in relation to the structural diversity of the basilar papilla. Hearing Research, 273(1–2), 80–88.

    Article  CAS  PubMed  Google Scholar 

  • Gobes, S. M., & Bolhuis, J. J. (2007). Birdsong memory: A neural dissociation between song recognition and production. Current Biology, 17(9), 789–793.

    Article  CAS  PubMed  Google Scholar 

  • Gobes, S. M., Zandbergen, M. A., & Bolhuis, J. J. (2010). Memory in the making: Localized brain activation related to song learning in young songbirds. Proceedings Biological Sciences, 277(1698), 3343–3351.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris, K. D., & Mrsic-Flogel, T. D. (2013). Cortical connectivity and sensory coding. Nature, 503(7474), 51–58.

    Article  CAS  PubMed  Google Scholar 

  • Hauber, M. E., Cassey, P., Woolley, S. M., & Theunissen, F. E. (2007a). Neurophysiological response selectivity for conspecific songs over synthetic sounds in the auditory forebrain of non-singing female songbirds. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 193(7), 765–774.

    Article  PubMed  Google Scholar 

  • Hauber, M. E., Woolley, S. M., & Theunissen, F. E. (2007b). Experience-dependence of neural responses to social vs. isolate conspecific songs in the forebrain of female zebra finches. Journal of Ornithology, 148.2, 231239.

    Article  Google Scholar 

  • Hauber, M. E., Campbell, D. L. M., & Woolley, S. M. (2010). Functional role and female perception of male song in zebra finches. Emu – Austral Ornithology, 110, 209–218.

    Google Scholar 

  • Heffner, H. E., & Heffner, R. S. (2008). Audition. In S. F. Davis (Ed.), Handbook of research methods in experimental psychology (pp. 413–440). Hoboken, NJ: Wiley-Blackwell.

    Google Scholar 

  • Heffner, H. E., & Heffner, R. S. (2007). Hearing ranges of laboratory animals. Journal of the American Association of Laboratory Animal Science, 46(1), 20–22.

    CAS  Google Scholar 

  • Immelmann, K. (1969). Song development in the zebra finch and other estrildid finches. In R. A. Hinde (Ed.), Bird vocalizations (pp. 61–77). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jin, H., & Clayton, D. F. (1997). Localized changes in immediate-early gene regulation during sensory and motor learning in zebra finches. Neuron, 19(5), 1049–1059.

    Article  CAS  PubMed  Google Scholar 

  • Karten, H. J. (2013). Neocortical evolution: Neuronal circuits arise independently of lamination. Current Biology, 23(1), R12–15.

    Article  CAS  PubMed  Google Scholar 

  • Konishi, M. (1964). Effects of deafening on song development in two species of juncos. Condor, 66, 85–102.

    Article  Google Scholar 

  • Konishi, M. (2004). The role of auditory feedback in birdsong. Annals of the New York Academy of Sciences, 1016, 463–475.

    Article  PubMed  Google Scholar 

  • Köppl, C. (2011). Birds—same thing, but different? Convergent evolution in the avian and mammalian auditory systems provides informative comparative models. Hearing Research, 273(1–2), 65–71.

    Article  PubMed  Google Scholar 

  • Kuhl, P. K. (2007). Is speech learning ‘gated’ by the social brain? Developmental Science, 10(1), 110–120.

    Article  PubMed  Google Scholar 

  • Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron, 67(5), 713–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauay, C., Gerlach, N. M., Adkins-Regan, E., & Devoogd, T. J. (2004). Female zebra finches require early song exposure to prefer high-quality song as adults. Animal Behaviour, 68(6), 1249–1255.

    Article  Google Scholar 

  • London, S. E., & Clayton, D. F. (2008). Functional identification of sensory mechanisms required for developmental song learning. Nature Neuroscience, 11(5), 579–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marler, P. (2004). Innateness and the instinct to learn. Anais da Academia Brasileira de Ciências, 76(2), 189–200.

    Article  PubMed  Google Scholar 

  • Marler, P., & Waser, M. S. (1977). Role of auditory feedback in canary song development. Journal of Comparative and Physiology Psychology, 91(1), 8–16.

    Article  CAS  Google Scholar 

  • Maul, K. K., Voss, H. U., Parra, L. C., Salgado-Commissariat, D., et al. (2010). The development of stimulus-specific auditory responses requires song exposure in male but not female zebra finches. Developmental Neurobiology, 70(1), 28–40.

    PubMed  PubMed Central  Google Scholar 

  • Meliza, C. D., & Margoliash, D. (2012). Emergence of selectivity and tolerance in the avian auditory cortex. The Journal of Neuroscience, 32(43), 15158–15168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mello, C., Nottebohm, F., & Clayton, D. (1995). Repeated exposure to one song leads to a rapid and persistent decline in an immediate early gene's response to that song in zebra finch telencephalon. The Journal of Neuroscience, 15(10), 6919–6925.

    CAS  PubMed  Google Scholar 

  • Mello, C. V., & Jarvis, E. D. (2008). Behavior-dependent expression of inducible genes in vocal learning birds. In H. P. Zeigler & P. Marler (Eds.), Neuroscience of birdsong. Cambridge: Cambridge University Press.

    Google Scholar 

  • Miller, D. B. (1979). Long-term recognition of father’s song by female zebra finches. Nature, 280, 389–391.

    Article  Google Scholar 

  • Nagel, K. I., & Doupe, A. J. (2008). Organizing principles of spectro-temporal encoding in the avian primary auditory area field L. Neuron, 58(6), 938–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Njegovan, M., & Weisman, R. (1997). Pitch discrimination in field- and isolation-reared black capped chickadees (Parus atricapillus). Journal of Comparative Psychology, 111, 294–301.

    Article  Google Scholar 

  • Okanoya, K., & Dooling, R. J. (1987). Hearing in passerine and psittacine birds: A comparative study of absolute and masked auditory thresholds. Journal of Comparative Psychology, 101(1), 7–15.

    Article  CAS  PubMed  Google Scholar 

  • Phan, M. L., Pytte, C. L., & Vicario, D. S. (2006). Early auditory experience generates long-lasting memories that may subserve vocal learning in songbirds. Proceedings of the National Academy of Sciences of the USA, 103(4), 1088–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirier, C., Boumans, T., Verhoye, M., Balthazart, J., & Van der Linden, A. (2009). Own-song recognition in the songbird auditory pathway: Selectivity and lateralization. The Journal of Neuroscience, 29(7), 2252–2258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poremba, A., Bigelow, J., & Rossi, B. (2013). Processing of communication sounds: Contributions of learning, memory, and experience. Hearing Research, 305, 31–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richner, H. (2016). Interval singing links to phenotypic quality in a songbird. Proceedings of the National Academy of Sciences of the USA, 113(45), 12763–12767.

    Article  CAS  PubMed Central  Google Scholar 

  • Riebel, K. (2009). Song and female mate choices in zebra finches—a review. Advances in the Study of Behavior, 40, 197–238.

    Article  Google Scholar 

  • Saffran, J. R., Werker, J. F., & Werner, L. A. (2006). The infant’s auditory world: Hearing, speech and the beginnings of language. In R. Seigler & D. Kuhn (Eds.), Handbook of child development (pp. 58–108). Hoboken, NJ: John Wiley & Sons.

    Google Scholar 

  • Sanes, D. H., & Woolley, S. M. (2011). A behavioral framework to guide research on central auditory development and plasticity. Neuron, 72(6), 912–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider, D. M., & Woolley, S. M. (2010). Discrimination of communication vocalizations by single neurons and groups of neurons in the auditory midbrain. Journal of Neurophysiology, 103(6), 3248–3265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider, D. M., & Woolley, S. M. (2011). Extra-classical tuning predicts stimulus-dependent receptive fields in auditory neurons. The Journal of Neuroscience, 31(33), 11867–11878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider, D. M., & Woolley, S. M. (2013). Sparse and background-invariant coding of vocalizations in auditory scenes. Neuron, 79(1), 141–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stripling, R., Volman, S. F., & Clayton, D. F. (1997). Response modulation in the zebra finch neostriatum: Relationship to nuclear gene regulation. The Journal of Neuroscience, 17(10), 3883–3893.

    CAS  PubMed  Google Scholar 

  • Stripling, R., Kruse, A. A., & Clayton, D. F. (2001). Development of song responses in the zebra finch caudomedial neostriatum: Role of genomic and electrophysiological activities. Journal of Neurobiology, 48(3), 163–180.

    Article  CAS  PubMed  Google Scholar 

  • Sturdy, C. B., Phillmore, L. S., Sartor, J. J., & Weisman, R. G. (2001). Reduced social contact causes auditory perceptual deficits in zebra finches, (Taeniopygia guttata). Animal Behaviour, 62, 1207–1218.

    Article  Google Scholar 

  • Terleph, T. A., Lu, K., & Vicario, D. S. (2008). Response properties of the auditory telencephalon in songbirds change with recent experience and season. PLoS ONE, 3(8), e2854.

    Article  PubMed  PubMed Central  Google Scholar 

  • Terpstra, N. J., Bolhuis, J. J., & den Boer-Visser, A. M. (2004). An analysis of the neural representation of birdsong memory. The Journal of Neuroscience, 24(21), 4971–4977.

    Article  CAS  PubMed  Google Scholar 

  • Theunissen, F. E., Woolley, S. M., Hsu, A., & Fremouw, T. (2004a). Methods for the analysis of auditory processing in the brain. Annals of the New York Academy of Sciences, 1016, 187–207.

    Article  PubMed  Google Scholar 

  • Theunissen, F. E., Amin, N., Shaevitz, S. S., Woolley, S. M., et al. (2004b). Song selectivity in the song system and in the auditory forebrain. Annals of the New York Academy of Sciences, 1016, 222–245.

    Article  PubMed  Google Scholar 

  • Tischmeyer, W., & Grimm, R. (1999). Activation of immediate early genes and memory formation. Cellular and Molecular Life Sciences, 55, 564–574.

    Article  CAS  PubMed  Google Scholar 

  • Tomaszycki, M. L., Sluzas, E. M., Sundberg, K. A., Newman, S. W., & DeVoogd, T. J. (2006). Immediate early gene (ZENK) responses to song in juvenile female and male zebra finches: Effects of rearing environment. Journal of Neurobiology, 66(11), 1175–1182.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Brzozowska-Prechtl, A., & Karten, H. J. (2010). Laminar and columnar auditory cortex in avian brain. Proceedings of the National Academy of Sciences of the USA, 107(28), 12676–12681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werker, J. F., & Tees, R. C. (1999). Influences on infant speech processing: Toward a new synthesis. Annual Review of Psychology, 50, 509–535.

    Article  CAS  PubMed  Google Scholar 

  • Woolley, S. M. (2008). Auditory feedback and singing in adult birds. In H. P. Zeigler & P. Marler (Eds.), Neuroscience of birdsong (pp. 228–239). Cambridge: Cambridge University Press.

    Google Scholar 

  • Woolley, S. M., & Casseday, J. H. (2004). Response properties of single neurons in the zebra finch auditory midbrain: Response patterns, frequency coding, intensity coding, and spike latencies. Journal of Neurophysiology, 91(1), 136–151.

    Article  PubMed  Google Scholar 

  • Woolley, S. M., & Casseday, J. H. (2005). Processing of modulated sounds in the zebra finch auditory midbrain: Responses to noise, frequency sweeps, and sinusoidal amplitude modulations. Journal of Neurophysiology, 94(2), 1143–1157.

    Article  PubMed  Google Scholar 

  • Woolley, S. M., & Moore, J. M. (2011). Coevolution in communication senders and receivers: Vocal behavior and auditory processing in multiple songbird species. New Perspectives on Neurobehavioral Evolution, 1225, 155–165.

    Google Scholar 

  • Woolley, S. M., & Portfors, C. V. (2013). Conserved mechanisms of vocalization coding in mammalian and songbird auditory midbrain. Hearing Research, 305, 45–56.

    Article  PubMed  Google Scholar 

  • Woolley, S. M., & Rubel, E. W. (1999). High-frequency auditory feedback is not required for adult song maintenance in Bengalese finches. The Journal of Neuroscience, 19(1), 358–371.

    CAS  PubMed  Google Scholar 

  • Woolley, S. M., Wissman, A. M., & Rubel, E. W. (2001). Hair cell regeneration and recovery of auditory thresholds following aminoglycoside ototoxicity in Bengalese finches. Hearing Research, 153(1–2), 181–195.

    Article  CAS  PubMed  Google Scholar 

  • Woolley, S. M., Fremouw, T. E., Hsu, A., & Theunissen, F. E. (2005). Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds. Nature Neuroscience, 8(10), 1371–1379.

    Article  CAS  PubMed  Google Scholar 

  • Woolley, S. M., Gill, P. R., & Theunissen, F. E. (2006). Stimulus-dependent auditory tuning results in synchronous population coding of vocalizations in the songbird midbrain. The Journal of Neuroscience, 26(9), 2499–2512.

    Article  CAS  PubMed  Google Scholar 

  • Woolley, S. M., Gill, P. R., Fremouw, T., & Theunissen, F. E. (2009). Functional groups in the avian auditory system. The Journal of Neuroscience, 29(9), 2780–2793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolley, S. M., Hauber, M. E., & Theunissen, F. E. (2010). Developmental experience alters information coding in auditory midbrain and forebrain neurons. Developmental Neurobiology, 70(4), 235–252.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yanagihara, S., & Yazaki-Sugiyama, Y. (2016). Auditory experience-dependent cortical circuit shaping for memory formation in bird song learning. Nature Communications, 7, 11946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, L. M., & Vicario, D. S. (2015). Exposure to a novel stimulus environment alters patterns of lateralization in avian auditory cortex. Neuroscience, 285, 107–118.

    Article  CAS  PubMed  Google Scholar 

  • Zann, R. A. (1996). The zebra finch: A synthesis of field and laboratory studies. Oxford: Oxford University Press.

    Google Scholar 

Download references

Acknowledgments

The author thanks Edwin W Rubel for his scientific findings, ideas, and mentorship that contributed to this work. The author’s work was supported by NIH grant R01-DC-009810.

Compliance with Ethics Requirements

Sarah M. N. Woolley declares that she has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah M. N. Woolley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Woolley, S.M.N. (2017). Early Experience and Auditory Development in Songbirds. In: Cramer, K., Coffin, A., Fay, R., Popper, A. (eds) Auditory Development and Plasticity. Springer Handbook of Auditory Research, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-21530-3_8

Download citation

Publish with us

Policies and ethics