Skip to main content

Glutamate Signaling in the Auditory Brainstem

  • Chapter
  • First Online:
Auditory Development and Plasticity

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 64))

  • 805 Accesses

Abstract

Glutamate signaling in the auditory brainstem is a dynamic process. ItĀ involves the perfect coordination of pre- and postsynaptic factors that reliably permit the transfer of information between neurons. When compared to other brain regions, glutamate signaling in the auditory brainstem is unique in that it provides the initial mechanisms underlying the perception of behaviorally relevant communication signals. Disruptions in such mechanisms are thought to underlie several hearing-related disorders. Relying on the foundation of work by Dr. Edwin Rubel and colleagues, this chapter offers a conceptual overview of factors that regulate glutamate signaling in the auditory brainstem, as well as determinants responsible for development, activity-dependent regulation, pathophysiology, and neuromodulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[Ca2+]i :

Intracellular free calcium concentration

AMPA-R:

Ī±-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

AP:

Action potential

AVCN:

Anteroventral cochlear nucleus

CN:

Cochlear nucleus

CNS:

Central nervous system

DCN:

Dorsal cochlear nucleus

EPSC:

Excitatory postsynaptic current

EPSP:

Excitatory postsynaptic potential

GABABR:

Ī³-Aminobutyric acid receptor

GPCR:

G proteinā€“coupled receptor

IC:

Inferior colliculus

iGluR:

Ionotropic glutamate receptors

ILD:

Interaural level difference

IPSC:

Inhibitory postsynaptic current

ITD:

Interaural time difference

LSO:

Lateral superior olive

LTD:

Long-term depression

LTP:

Long-term potentiation

mGluR:

Metabotropic glutamate receptor

MNTB:

Medial nucleus of trapezoid body

MSO:

Medial superior olive

NL:

Nucleus laminaris

NM:

Cochlear nucleus magnocellularis

NMDA-R:

Ī-Methyl-d-aspartate receptor

SOC:

Superior olivary complex

TTX:

Tetrodotoxin

VCN:

Ventral cochlear nucleus

VGCC:

Voltage-gated calcium channel

References

  • Anderson, C. T., Radford, R. J., Zastrow, M. L., Zhang, D. Y., et al. (2015). Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc. Proceedings of the National Academy of Sciences of the USA, 112(20), 2705ā€“2714.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Barnes-Davies, M., & Forsythe, I. D. (1995). Pre- and postsynaptic glutamate receptors at a giant excitatory synapse in rat auditory brainstem slices. The Journal of Physiology, 488 (Pt 2), 387ā€“406.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bartlett, T. E., & Wang, Y. T. (2013). The intersections of NMDAR-dependent synaptic plasticity and cell survival. Neuropharmacology, 74, 59ā€“68.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Berridge, M. J. (2014). Calcium regulation of neural rhythms, memory and Alzheimerā€™s disease. The Journal of Physiology, 592 (Pt 2), 281ā€“293.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bilak, M. M., Bilak, S. R., & Morest, D. K. (1996). Differential expression of N-methyl-d-aspartate receptor in the cochlear nucleus of the mouse. Neuroscience, 75(4), 1075ā€“1097.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Billups, B., Graham, B. P., Wong, A. Y., & Forsythe, I. D. (2005). Unmasking group III metabotropic glutamate autoreceptor function at excitatory synapses in the rat CNS. The Journal of Physiology, 565(Pt 3), 885ā€“896.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Blackmer, T., Kuo, S. P., Bender, K. J., Apostolides, P. F., & Trussell, L. O. (2009). Dendritic calcium channels and their activation by synaptic signals in auditory coincidence detector neurons. The Journal of Neurophysiology, 102(2), 1218ā€“1226.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Born, D. E., & Rubel, E. W. (1985). Afferent influences on brain stem auditory nuclei of the chicken: Neuron number and size following cochlea removal. The Journal of Comparative Neurology, 231(4), 435ā€“445.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Born, D. E., & Rubel, E. W. (1988). Afferent influences on brain stem auditory nuclei of the chicken: Presynaptic action potentials regulate protein synthesis in nucleus magnocellularis neurons. The Journal of Neuroscience, 8(3), 901ā€“919.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Brenowitz, S., & Trussell, L. O. (2001). Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus. The Journal of Neuroscience, 21(23), 9487ā€“9498.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Brenowitz, S., David, J., & Trussell, L. (1998). Enhancement of synaptic efficacy by presynaptic GABA(B) receptors. Neuron, 20(1), 135ā€“141.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Carzoli, K. L., & Hyson, R. L. (2011). In vivo analysis of the role of metabotropic glutamate receptors in the afferent regulation of chick cochlear nucleus neurons. Hearing Research, 272(1ā€“2), 49ā€“57.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chalifoux, J. R., & Carter, A. G. (2011). GABAB receptor modulation of synaptic function. Current Opinion in Neurobiology, 21(2), 339ā€“344.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Chanda, S., & Xu-Friedman, M. A. (2010). A low-affinity antagonist reveals saturation and desensitization in mature synapses in the auditory brain stem. Journal of Neurophysiology, 103(4), 1915ā€“1926.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Chanda, S., & Xu-Friedman, M. A. (2011). Excitatory modulation in the cochlear nucleus through group I metabotropic glutamate receptor activation. The Journal of Neuroscience, 31(20), 7450ā€“7455.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Code, R. A., & Carr, C. E. (1994). Choline acetyltransferase-immunoreactive cochlear efferent neurons in the chick auditory brainstem. The Journal of Comparative Neurology, 340(2), 161ā€“173.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Couchman, K., Grothe, B., & Felmy, F. (2012). Functional localization of neurotransmitter receptors and synaptic inputs to mature neurons of the medial superior olive. Journal of Neurophysiology, 107(4), 1186ā€“1198.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cramer, K. S., Bermingham-McDonogh, O., Krull, C. E., & Rubel, E. W. (2004). EphA4 signaling promotes axon segregation in the developing auditory system. Developmental Biology, 269(1), 26ā€“35.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cramer, K. S., Cerretti, D. P., & Siddiqui, S. A. (2006). EphB2 regulates axonal growth at the midline in the developing auditory brainstem. Developmental Biology, 295(1), 76ā€“89.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Denker, A., & Rizzoli, S. O. (2010). Synaptic vesicle pools: An update. Frontiers in Synaptic Neuroscience, 2, 135.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Dietz, B., Jovanovic, S., Wielsch, B., Nerlich, J., et al. (2012). Purinergic modulation of neuronal activity in developing auditory brainstem. The Journal of Neuroscience, 32(31), 10699ā€“10712.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dingledine, R., Borges, K., Bowie, D., & Traynelis, S. F. (1999). The glutamate receptor ion channels. Pharmacology Reviews, 51(1), 7ā€“61.

    CASĀ  Google ScholarĀ 

  • Ebert, U., & Ostwald, J. (1995). GABA can improve acoustic contrast in the rat ventral cochlear nucleus. Experimental Brain Research, 104(2), 310ā€“322.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ene, F. A., Kullmann, P. H., Gillespie, D. C., & Kandler, K. (2003). Glutamatergic calcium responses in the developing lateral superior olive: Receptor types and their specific activation by synaptic activity patterns. Journal of Neurophysiology, 90(4), 2581ā€“2591.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ene, F. A., Kalmbach, A., & Kandler, K. (2007). Metabotropic glutamate receptors in the lateral superior olive activate TRP-like channels: Age- and experience-dependent regulation. Journal of Neurophysiology, 97(5), 3365ā€“3375.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Farazifard, R., & Wu, S. H. (2010). Metabotropic glutamate receptors modulate glutamatergic and GABAergic synaptic transmission in the central nucleus of the inferior colliculus. Brain Research, 1325, 28ā€“40.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Feldman, D. E., & Knudsen, E. I. (1994). NMDA and non-NMDA glutamate receptors in auditory transmission in the barn owl inferior colliculus. The Journal of Neuroscience, 14(10), 5939ā€“5958.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Feldman, D. E., & Knudsen, E. I. (1997). An anatomical basis for visual calibration of the auditory space map in the barn owl's midbrain. The Journal of Neuroscience, 17(17), 6820ā€“6837.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Feldman, D. E., & Knudsen, E. I. (1998). Pharmacological specialization of learned auditory responses in the inferior colliculus of the barn owl. The Journal of Neuroscience, 18(8), 3073ā€“3087.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Fioravante, D., & Regehr, W. G. (2011). Short-term forms of presynaptic plasticity. Current Opinion in Neurobiology, 21(2), 269ā€“274.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Flint, A. C., Maisch, U. S., Weishaupt, J. H., Kriegstein, A. R., & Monyer, H. (1997). NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. The Journal of Neuroscience, 17(7), 2469ā€“2476.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Forsythe, I. D. (1994). Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. The Journal of Physiology, 479 (Pt 3), 381ā€“387.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Fortune, E. S., & Rose, G. J. (2001). Short-term synaptic plasticity as a temporal filter. Trends in Neuroscience, 24(7), 381ā€“385.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Franken, T. P., Roberts, M. T., Wei, L., Golding, N. L., & Joris, P. X. (2015). In vivo coincidence detection in mammalian sound localization generates phase delays. Nature Neuroscience, 18(3), 444ā€“452.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Fujino, K., & Oertel, D. (2003). Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus. Proceedings of the National Academy of Sciences of the USA, 100(1), 265ā€“270.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gambrill, A. C., & Barria, A. (2011). NMDA receptor subunit composition controls synaptogenesis and synapse stabilization. Proceedings of the National Academy of Sciences of the USA, 108(14), 5855ā€“5860.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gillespie, D. C., Kim, G., & Kandler, K. (2005). Inhibitory synapses in the developing auditory system are glutamatergic. Nature Neuroscience, 8(3), 332ā€“338.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hall, B. J., & Ghosh, A. (2008). Regulation of AMPA receptor recruitment at developing synapses. Trends in Neuroscience, 31(2), 82ā€“89.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hall, B. J., Ripley, B., & Ghosh, A. (2007). NR2B signaling regulates the development of synaptic AMPA receptor current. The Journal of Neuroscience, 27(49), 13446ā€“13456.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Harris, J. A., & Rubel, E. W. (2006). Afferent regulation of neuron number in the cochlear nucleus: Cellular and molecular analyses of a critical period. Hearing Research, 216ā€“217, 127ā€“137.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Harris, J. A., Iguchi, F., Seidl, A. H., Lurie, D. I., & Rubel, E. W. (2008). Afferent deprivation elicits a transcriptional response associated with neuronal survival after a critical period in the mouse cochlear nucleus. The Journal of Neuroscience, 28(43), 10990ā€“11002.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hassfurth, B., Grothe, B., & Koch, U. (2010). The mammalian interaural time difference detection circuit is differentially controlled by GABAB receptors during development. The Journal of Neuroscience, 30(29), 9715ā€“9727.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • He, S., Wang, Y. X., Petralia, R. S., & Brenowitz, S. D. (2014). Cholinergic modulation of large-conductance calcium-activated potassium channels regulates synaptic strength and spine calcium in cartwheel cells of the dorsal cochlear nucleus. The Journal of Neuroscience, 34(15), 5261ā€“5272.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Henley, J. M., Barker, E. A., & Glebov, O. O. (2011). Routes, destinations and delays: Recent advances in AMPA receptor trafficking. Trends in Neuroscience, 34(5), 258ā€“268.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hoffpauir, B. K., Grimes, J. L., Mathers, P. H., & Spirou, G. A. (2006). Synaptogenesis of the calyx of Held: Rapid onset of function and one-to-one morphological innervation. The Journal of Neuroscience, 26(20), 5511ā€“5523.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hollmann, M., & Heinemann, S. (1994). Cloned glutamate receptors. Annual Review of Neuroscience, 17, 31ā€“108.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hyson, R. L. (1997). Transneuronal regulation of ribosomes after blockade of ionotropic excitatory amino acid receptors. Brain Research, 749(1), 61ā€“70.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hyson, R. L. (1998). Activation of metabotropic glutamate receptors is necessary for transneuronal regulation of ribosomes in chick auditory neurons. Brain Research, 809(2), 214ā€“220.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hyson, R. L., & Rubel, E. W. (1989). Transneuronal regulation of protein synthesis in the brain-stem auditory system of the chick requires synaptic activation. The Journal of Neuroscience, 9(8), 2835ā€“2845.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Irie, T., & Ohmori, H. (2008). Presynaptic GABA(B) receptors modulate synaptic facilitation and depression at distinct synapses in fusiform cells of mouse dorsal cochlear nucleus. Biochemical and Biophysical Research Communications, 367(2), 503ā€“508.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Isaacson, J. S., & Walmsley, B. (1996). Amplitude and time course of spontaneous and evoked excitatory postsynaptic currents in bushy cells of the anteroventral cochlear nucleus. Journal of Neurophysiology, 76(3), 1566ā€“1571.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Juiz, J. M., Albin, R. L., Helfert, R. H., & Altschuler, R. A. (1994). Distribution of GABAA and GABAB binding sites in the cochlear nucleus of the guinea pig. Brain Research, 639(2), 193ā€“201.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kalmbach, A., Kullmann, P. H., & Kandler, K. (2010). NMDAR-mediated calcium transients elicited by glutamate co-release at developing inhibitory synapses. Frontiers in Synaptic Neuroscience, 2, 27.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kandler, K., & Friauf, E. (1995). Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats. The Journal of Neuroscience, 15(10), 6890ā€“6904.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kandler, K., & Gillespie, D. C. (2005). Developmental refinement of inhibitory sound-localization circuits. Trends in Neuroscience, 28(6), 290ā€“296.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kantamneni, S. (2015). Cross-talk and regulation between glutamate and GABAB receptors. Frontiers in Cellular Neuroscience, 9, 135.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kato, B. M., & Rubel, E. W. (1999). Glutamate regulates IP3-type and CICR stores in the avian cochlear nucleus. Journal of Neurophysiology, 81(4), 1587ā€“1596.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kato, B. M., Lachica, E. A., & Rubel, E. W. (1996). Glutamate modulates intracellular Ca2+ stores in brain stem auditory neurons. Journal of Neurophysiology, 76(1), 646ā€“650.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kim, S. J., Kim, Y. S., Yuan, J. P., Petralia, R. S., et al. (2003). Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature, 426(6964), 285ā€“291.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kopp-Scheinpflug, C., Steinert, J. R., & Forsythe, I. D. (2011). Modulation and control of synaptic transmission across the MNTB. Hearing Research, 279(1ā€“2), 22ā€“31.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Kotak, V. C., & Sanes, D. H. (1995). Synaptically evoked prolonged depolarizations in the developing auditory system. Journal of Neurophysiology, 74(4), 1611ā€“1620.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kotak, V. C., & Sanes, D. H. (1997). Deafferentation weakens excitatory synapses in the developing central auditory system. European Journal of Neuroscience, 9(11), 2340ā€“2347.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kuba, H., Koyano, K., & Ohmori, H. (2002). Synaptic depression improves coincidence detection in the nucleus laminaris in brainstem slices of the chick embryo. European Journal of Neuroscience, 15(6), 984ā€“990.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Kuba, H., Oichi, Y., & Ohmori, H. (2010). Presynaptic activity regulates Na(+) channel distribution at the axon initial segment. Nature, 465(7301), 1075ā€“1078.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kushmerick, C., Price, G. D., Taschenberger, H., Puente, N., et al. (2004). Retroinhibition of presynaptic Ca2+ currents by endocannabinoids released via postsynaptic mGluR activation at a calyx synapse. The Journal of Neuroscience, 24(26), 5955ā€“5965.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lachica, E. A., Rubsamen, R., Zirpel, L., & Rubel, E. W. (1995). Glutamatergic inhibition of voltage-operated calcium channels in the avian cochlear nucleus. The Journal of Neuroscience, 15(3 Pt 1), 1724ā€“1734.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lachica, E. A., Kato, B. M., Lippe, W. R., & Rubel, E. W. (1998). Glutamatergic and GABAergic agonists increase [Ca2+]i in avian cochlear nucleus neurons. Journal of Neurobiology, 37(2), 321ā€“337.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Levi-Montalcini, R. (1949). The development to the acoustico-vestibular centers in the chick embryo in the absence of the afferent root fibers and of descending fiber tracts. The Journal of Comparative Neurology, 91(2), 209ā€“241.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lu, T., & Trussell, L. O. (2007). Development and elimination of endbulb synapses in the chick cochlear nucleus. The Journal of Neuroscience, 27(4), 808ā€“817.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lu, Y. (2014). Metabotropic glutamate receptors in auditory processing. Neuroscience, 274, 429ā€“445.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lu, Y., & Rubel, E. W. (2005). Activation of metabotropic glutamate receptors inhibits high-voltage-gated calcium channel currents of chicken nucleus magnocellularis neurons. Journal of Neurophysiology, 93(3), 1418ā€“1428.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lu, Y., Harris, J. A., & Rubel, E. W. (2007). Development of spontaneous miniature EPSCs in mouse AVCN neurons during a critical period of afferent-dependent neuron survival. Journal of Neurophysiology, 97(1), 635ā€“646.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Luscher, C., Nicoll, R. A., Malenka, R. C., & Muller, D. (2000). Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nature Neuroscience, 3(6), 545ā€“550.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ma, C. L., Kelly, J. B., & Wu, S. H. (2002). AMPA and NMDA receptors mediate synaptic excitation in the rat's inferior colliculus. Hearing Research, 168(1ā€“2), 25ā€“34.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Magnusson, A. K., Park, T. J., Pecka, M., Grothe, B., & Koch, U. (2008). Retrograde GABA signaling adjusts sound localization by balancing excitation and inhibition in the brainstem. Neuron, 59(1), 125ā€“137.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Malenka, R. C. (1994). Synaptic plasticity in the hippocampus: LTP and LTD. Cell, 78(4), 535ā€“538.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Martinez-Galan, J. R., Perez-Martinez, F. C., & Juiz, J. M. (2012). Signalling routes and developmental regulation of group I metabotropic glutamate receptors in rat auditory midbrain neurons. Journal of Neuroscience Research, 90(10), 1913ā€“1923.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mayer, F., Albrecht, O., Dondzillo, A., & Klug, A. (2014). Glycinergic inhibition to the medial nucleus of the trapezoid body shows prominent facilitation and can sustain high levels of ongoing activity. Journal of Neurophysiology, 112(11), 2901ā€“2915.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Nicholas, A. H., & Hyson, R. L. (2004). Group I and II metabotropic glutamate receptors are necessary for the activity-dependent regulation of ribosomes in chick auditory neurons. Brain Research, 1014(1ā€“2), 110ā€“119.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nicoletti, F., Wroblewski, J. T., Novelli, A., Alho, H., et al. (1986). The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. The Journal of Neuroscience, 6(7), 1905ā€“1911.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Nicoletti, F., Bruno, V., Ngomba, R. T., Gradini, R., & Battaglia, G. (2015). Metabotropic glutamate receptors as drug targets: Whatā€™s new? Current Opinion in Pharmacology, 20, 89ā€“94.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Niedzielski, A. S., & Wenthold, R. J. (1995). Expression of AMPA, kainate, and NMDA receptor subunits in cochlear and vestibular ganglia. The Journal of Neuroscience, 15(3 Pt 2), 2338ā€“2353.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Nishimaki, T., Jang, I. S., Ishibashi, H., Yamaguchi, J., & Nabekura, J. (2007). Reduction of metabotropic glutamate receptor-mediated heterosynaptic inhibition of developing MNTB-LSO inhibitory synapses. European Journal of Neuroscience, 26(2), 323ā€“330.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Niswender, C. M., & Conn, P. J. (2010). Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Annual Review of Pharmacology and Toxicology, 50, 295ā€“322.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Okuda, H., Yamada, R., Kuba, H., & Ohmori, H. (2013). Activation of metabotropic glutamate receptors improves the accuracy of coincidence detection by presynaptic mechanisms in the nucleus laminaris of the chick. The Journal of Physiology, 591(Pt 1), 365ā€“378.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Oleskevich, S., & Walmsley, B. (2002). Synaptic transmission in the auditory brainstem of normal and congenitally deaf mice. The Journal of Physiology, 540(Pt 2), 447ā€“455.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Oleskevich, S., Youssoufian, M., & Walmsley, B. (2004). Presynaptic plasticity at two giant auditory synapses in normal and deaf mice. The Journal of Physiology, 560(Pt 3), 709ā€“719.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Otis, T. S., & Trussell, L. O. (1996). Inhibition of transmitter release shortens the duration of the excitatory synaptic current at a calyceal synapse. Journal of Neurophysiology, 76(5), 3584ā€“3588.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Otis, T. S., Raman, I. M., & Trussell, L. O. (1995). AMPA receptors with high Ca2+ permeability mediate synaptic transmission in the avian auditory pathway. The Journal of Physiology, 482 (Pt 2), 309ā€“315.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Paoletti, P., Bellone, C., & Zhou, Q. (2013). NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nature Reviews Neuroscience, 14(6), 383ā€“400.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Parks, T. N. (2000). The AMPA receptors of auditory neurons. Hearing Research, 147(1ā€“2), 77ā€“91.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Petralia, R. S., Wang, Y. X., Mayat, E., & Wenthold, R. J. (1997). Glutamate receptor subunit 2-selective antibody shows a differential distribution of calcium-impermeable AMPA receptors among populations of neurons. The Journal of Comparative Neurology, 385(3), 456ā€“476.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Petralia, R. S., Rubio, M. E., Wang, Y. X., & Wenthold, R. J. (2000). Differential distribution of glutamate receptors in the cochlear nuclei. Hearing Research, 147(1ā€“2), 59ā€“69.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pliss, L., Yang, H., & Xu-Friedman, M. A. (2009). Context-dependent effects of NMDA receptors on precise timing information at the endbulb of Held in the cochlear nucleus. Journal of Neurophysiology, 102(5), 2627ā€“2637.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Raman, I. M., Zhang, S., & Trussell, L. O. (1994). Pathway-specific variants of AMPA receptors and their contribution to neuronal signaling. The Journal of Neuroscience, 14(8), 4998ā€“5010.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Ravindranathan, A., Parks, T. N., & Rao, M. S. (1997). New isoforms of the chick glutamate receptor subunit GluR4: Molecular cloning, regional expression and developmental analysis. Brain Research Molecular Brain Research, 50(1ā€“2), 143ā€“153.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ravindranathan, A., Donevan, S. D., Sugden, S. G., Greig, A., et al. (2000). Contrasting molecular composition and channel properties of AMPA receptors on chick auditory and brainstem motor neurons. The Journal of Physiology, 523(Pt 3), 667ā€“684.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Rondard, P., & Pin, J. P. (2015). Dynamics and modulation of metabotropic glutamate receptors. Current Opinion in Pharmacology, 20, 95ā€“101.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rubel, E. W., & Fritzsch, B. (2002). Auditory system development: Primary auditory neurons and their targets. Annual Review of Neuroscience, 25, 51ā€“101.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sahley, T. L., Hammonds, M. D., & Musiek, F. E. (2013). Endogenous dynorphins, glutamate and N-methyl-d-aspartate (NMDA) receptors may participate in a stress-mediated type-I auditory neural exacerbation of tinnitus. Brain Research, 1499, 80ā€“108.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sanchez, J. T., Gans, D., & Wenstrup, J. J. (2007). Contribution of NMDA and AMPA receptors to temporal patterning of auditory responses in the inferior colliculus. The Journal of Neuroscience, 27(8), 1954ā€“1963.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sanchez, J. T., Wang, Y., Rubel, E. W., & Barria, A. (2010). Development of glutamatergic synaptic transmission in binaural auditory neurons. Journal of Neurophysiology, 104(3), 1774ā€“1789.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sanchez, J. T., Seidl, A. H., Rubel, E. W., & Barria, A. (2012). Control of neuronal excitability by NMDA-type glutamate receptors in early developing binaural auditory neurons. The Journal of Physiology, 590(Pt 19), 4801ā€“4818.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sanchez, J. T., Ghelani, S., & Otto-Meyer, S. (2015). From development to disease: Diverse functions of NMDA-type glutamate receptors in the lower auditory pathway. Neuroscience, 285, 248ā€“259.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sanes, D. H., McGee, J., & Walsh, E. J. (1998). Metabotropic glutamate receptor activation modulates sound level processing in the cochlear nucleus. Journal of Neurophysiology, 80(1), 209ā€“217.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Sanz-Clemente, A., Nicoll, R. A., & Roche, K. W. (2013). Diversity in NMDA receptor composition: Many regulators, many consequences. Neuroscientist, 19(1), 62ā€“75.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Schneggenburger, R., Sakaba, T., & Neher, E. (2002). Vesicle pools and short-term synaptic depression: Lessons from a large synapse. Trends in Neuroscience, 25(4), 206ā€“212.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shore, S. E. (2011). Plasticity of somatosensory inputs to the cochlear nucleus: Implications for tinnitus. Hearing Research, 281(1ā€“2), 38ā€“46.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sladeczek, F., Pin, J. P., Recasens, M., Bockaert, J., & Weiss, S. (1985). Glutamate stimulates inositol phosphate formation in striatal neurones. Nature, 317(6039), 717ā€“719.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Stange, A., Myoga, M. H., Lingner, A., Ford, M. C., et al. (2013). Adaptation in sound localization: From GABA(B) receptor-mediated synaptic modulation to perception. Nature Neuroscience, 16(12), 1840ā€“1847.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Steinert, J. R., Postlethwaite, M., Jordan, M. D., Chernova, T., et al. (2010). NMDAR-mediated EPSCs are maintained and accelerate in time course during maturation of mouse and rat auditory brainstem in vitro. The Journal of Physiology, 588(Pt 3), 447ā€“463.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Stincic, T. L., & Hyson, R. L. (2011). The localization and physiological effects of cannabinoid receptor 1 in the brain stem auditory system of the chick. Neuroscience, 194, 150ā€“159.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sun, H., Ma, C. L., Kelly, J. B., & Wu, S. H. (2006). GABAB receptor-mediated presynaptic inhibition of glutamatergic transmission in the inferior colliculus. Neuroscience Letters, 399(1ā€“2), 151ā€“156.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Takahashi, T., Forsythe, I. D., Tsujimoto, T., Barnes-Davies, M., & Onodera, K. (1996). Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science, 274(5287), 594ā€“597.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tang, Y. Z., & Carr, C. E. (2004). Development of NMDA R1 expression in chicken auditory brainstem. Hearing Research, 191(1ā€“2), 79ā€“89.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Tang, Y. Z., & Carr, C. E. (2007). Development of N-methyl-d-aspartate receptor subunits in avian auditory brainstem. The Journal of Comparative Neurology, 502(3), 400ā€“413.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Tang, Z. Q., Liu, Y. W., Shi, W., Dinh, E. H., et al. (2013). Activation of synaptic group II metabotropic glutamate receptors induces long-term depression at GABAergic synapses in CNS neurons. The Journal Neuroscience, 33(40), 15964ā€“15977.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tomita, S., Chen, L., Kawasaki, Y., Petralia, R. S., et al. (2003). Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. The Journal of Cell Biology, 161(4), 805ā€“816.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Traynelis, S. F., Wollmuth, L. P., McBain, C. J., Menniti, F. S., et al. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacology Review, 62(3), 405ā€“496.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Trussell, L. (1998). Control of time course of glutamatergic synaptic currents. Progress in Brain Research, 116, 59ā€“69.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Trussell, L. O. (1999). Synaptic mechanisms for coding timing in auditory neurons. Annual Review of Physiology, 61, 477ā€“496.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Trussell, L. O. (2002). Transmission at the hair cell synapse. Nature Neuroscience, 5(2), 85ā€“86.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Trussell, L. O., & Fischbach, G. D. (1989). Glutamate receptor desensitization and its role in synaptic transmission. Neuron, 3(2), 209ā€“218.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Turecek, R., & Trussell, L. O. (2001). Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature, 411(6837), 587ā€“590.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tzounopoulos, T. (2008). Mechanisms of synaptic plasticity in the dorsal cochlear nucleus: plasticity-induced changes that could underlie tinnitus. American Journal of Audiology, 17(2), S170ā€“175.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Tzounopoulos, T., Kim, Y., Oertel, D., & Trussell, L. O. (2004). Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nature Neuroscience, 7(7), 719ā€“725.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Vale, C., & Sanes, D. H. (2002). The effect of bilateral deafness on excitatory and inhibitory synaptic strength in the inferior colliculus. European Journal of Neuroscience, 16(12), 2394ā€“2404.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Voytenko, S. V., & Galazyuk, A. V. (2011). mGluRs modulate neuronal firing in the auditory midbrain. Neuroscience Letters, 492(3), 145ā€“149.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Walmsley, B., Berntson, A., Leao, R. N., & Fyffe, R. E. (2006). Activity-dependent regulation of synaptic strength and neuronal excitability in central auditory pathways. The Journal of Physiology, 572(Pt 2), 313ā€“321.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wang, L. C., Tang, Z. Q., & Lu, Y. (2012). Synaptic activity-induced Ca(2+) signaling in avian cochlear nucleus magnocellularis neurons. Neuroscience Reseatch, 72(2), 129ā€“139.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wang, Y., Cunningham, D. E., Tempel, B. L., & Rubel, E. W. (2009). Compartment-specific regulation of plasma membrane calcium ATPase type 2 in the chick auditory brainstem. The Journal of Comparative Neurology, 514(6), 624ā€“640.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wenzel, A., Villa, M., Mohler, H., & Benke, D. (1996). Developmental and regional expression of NMDA receptor subtypes containing the NR2D subunit in rat brain. Journal of Neurochemistry, 66(3), 1240ā€“1248.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wong, A. Y., Billups, B., Johnston, J., Evans, R. J., & Forsythe, I. D. (2006). Endogenous activation of adenosine A1 receptors, but not P2X receptors, during high-frequency synaptic transmission at the calyx of Held. Journal of Neurophysiology, 95(6), 3336ā€“3342.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wu, S. H., & Fu, X. W. (1998). Glutamate receptors underlying excitatory synaptic transmission in the rat's lateral superior olive studied in vitro. Hearing Research, 122(1ā€“2), 47ā€“59.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wu, S. H., Ma, C. L., Sivaramakrishnan, S., & Oliver, D. L. (2002). Synaptic modification in neurons of the central nucleus of the inferior colliculus. Hearing Research, 168(1ā€“2), 43ā€“54.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Xu-Friedman, M. A., & Regehr, W. G. (2004). Structural contributions to short-term synaptic plasticity. Physiological Reviews, 84(1), 69ā€“85.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yang, Y. M., Aitoubah, J., Lauer, A. M., Nuriya, M., et al. (2011). GluA4 is indispensable for driving fast neurotransmission across a high-fidelity central synapse. The Journal of Physiology, 589(Pt 17), 4209ā€“4227.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Youssoufian, M., Oleskevich, S., & Walmsley, B. (2005). Development of a robust central auditory synapse in congenital deafness. Journal of Neurophysiology, 94(5), 3168ā€“3180.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang, H., & Kelly, J. B. (2001). AMPA and NMDA receptors regulate responses of neurons in the rat's inferior colliculus. Journal of Neurophysiology, 86(2), 871ā€“880.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang, S., & Trussell, L. O. (1994). Voltage clamp analysis of excitatory synaptic transmission in the avian nucleus magnocellularis. The Journal of Physiology, 480(Pt 1), 123ā€“136.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zirpel, L., & Parks, T. N. (2001). Zinc inhibition of group I mGluR-mediated calcium homeostasis in auditory neurons. Journal of the Association of Research in Otolaryngology, 2(2), 180ā€“187.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zirpel, L., & Rubel, E. W. (1996). Eighth nerve activity regulates intracellular calcium concentration of avian cochlear nucleus neurons via a metabotropic glutamate receptor. Journal of Neurophysiology, 76(6), 4127ā€“4139.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Zirpel, L., Nathanson, N. M., Rubel, E. W., & Hyson, R. L. (1994). Glutamate-stimulated phosphatidylinositol metabolism in the avian cochlear nucleus. Neuroscience Letters, 168(1ā€“2), 163ā€“166.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zirpel, L., Lachica, E. A., & Rubel, E. W. (1995). Activation of a metabotropic glutamate receptor increases intracellular calcium concentrations in neurons of the avian cochlear nucleus. The Journal of Neuroscience, 15(1 Pt 1), 214ā€“222.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Zirpel, L., Lippe, W. R., & Rubel, E. W. (1998). Activity-dependent regulation of [Ca2+]i in avian cochlear nucleus neurons: Roles of protein kinases A and C and relation to cell death. Journal of Neurophysiolology, 79(5), 2288ā€“2302.

    CASĀ  Google ScholarĀ 

  • Zirpel, L., Janowiak, M. A., Taylor, D. A., & Parks, T. N. (2000). Developmental changes in metabotropic glutamate receptor-mediated calcium homeostasis. The Journal of Comparative Neurology, 421(1), 95ā€“106.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zucker, R. S., & Regehr, W. G. (2002). Short-term synaptic plasticity. Annual Review in Physiology, 64, 355ā€“405.

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Compliance with Ethics Requirements

Jason Tait Sanchez declares that he has no conflict of interest.

Yong Lu declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Tait Sanchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sanchez, J.T., Lu, Y. (2017). Glutamate Signaling in the Auditory Brainstem. In: Cramer, K., Coffin, A., Fay, R., Popper, A. (eds) Auditory Development and Plasticity. Springer Handbook of Auditory Research, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-21530-3_4

Download citation

Publish with us

Policies and ethics