The Molecular and Cellular Mechanisms of Zebrafish Lateral Line Development

  • Hillary F. McGraw
  • Catherine M. Drerup
  • Teresa Nicolson
  • Alex V. NechiporukEmail author
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 64)


In aquatic vertebrates, the lateral line mechanosensory system allows for sensation of changes in water current and mediates such behaviors as schooling, predator avoidance, and mating. The lateral line forms from placodes that arise just rostral and caudal to the otic placode. Shortly after placode formation, groups of cells will delaminate from the placodes and begin migrating either throughout the head or down the trunk of the developing embryo. These migratory groups of cells are known as the sensory ridges (head) and posterior lateral line primordium (trunk). During migration, they deposit cell clusters containing hair cell precursors. Shortly after deposition, these clusters will differentiate into mechanosensory organs called neuromasts. In larvae and adults, the lateral line system continues to elaborate; this is accomplished through a differentiation of latent precursors (larvae) as well as a cellular budding process (larvae and adults), resulting in strings of neuromasts that populate the body of aquatic vertebrates. The zebrafish (Danio rerio) has emerged as an exquisite model to study the formation and function of the lateral line system. This chapter describes the development of the zebrafish lateral line and the associated axonal innervations that make up the mechanosensory system.


Cranial placodes Development Fibroblast growth factor signaling Lateral line ganglion Mechanosensory hair cells Neuromast Primordium Wnt signaling 


Compliance with Ethics Requirements

Catherine M. Drerup declares no competing financial or ethical interests.

Hillary F. McGraw declares no competing financial or ethical interests.

Alex V. Nechiporuk declares no competing financial or ethical interests.

Teresa Nicolson declares no competing financial or ethical interests.


  1. Ahrens, K., & Schlosser, G. (2005). Tissues and signals involved in the induction of placodal Six1 expression in Xenopus laevis. Developmental Biology, 288(1), 40–59.PubMedCrossRefGoogle Scholar
  2. Alexandre, D., & Ghysen, A. (1999). Somatotopy of the lateral line projection in larval zebrafish. Proceedings of the National Academy of Sciences of the USA, 96(13), 7558–7562.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aman, A., & Piotrowski, T. (2008). Wnt/beta-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression. Developmental Cell, 15(5), 749–761.PubMedCrossRefGoogle Scholar
  4. Aman, A., & Piotrowski, T. (2011). Cell–cell signaling interactions coordinate multiple cell behaviors that drive morphogenesis of the lateral line. Cell Adhesion and Migration, 5(6), 499–508.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aman, A., Nguyen, M., & Piotrowski, T. (2010). Wnt/β-catenin dependent cell proliferation underlies segmented lateral line morphogenesis. Developmental Biology, doi: 10.1016/j.ydbio.2010.10.022.
  6. Aman, A., Nguyen, M., & Piotrowski, T. (2011). Wnt/beta-catenin dependent cell proliferation underlies segmented lateral line morphogenesis. Developmental Biology, 349(2), 470–482.PubMedCrossRefGoogle Scholar
  7. Andermann, P., Ungos, J., & Raible, D. W. (2002). Neurogenin1 defines zebrafish cranial sensory ganglia precursors. Developmental Biology, 251(1), 45–58.PubMedCrossRefGoogle Scholar
  8. Becker, T., Becker, C. G., Schachner, M., & Bernhardt, R. R. (2001). Antibody to the HNK-1 glycoepitope affects fasciculation and axonal pathfinding in the developing posterior lateral line nerve of embryonic zebrafish. Mechanisms of Development, 109(1), 37–49.PubMedCrossRefGoogle Scholar
  9. Bleckmann, H. (1993). Role of the lateral line and fish behavior. In T. J. Pitcher (ed.), Behaviour of Teleost Fishes, 2nd ed. (pp. 201–246). New York: Springer.Google Scholar
  10. Bricaud, O., Chaar, V., Dambly-Chaudiere, C., & Ghysen, A. (2001). Early efferent innervation of the zebrafish lateral line. The Journal of Comparative Neurology, 434(3), 253–261.PubMedCrossRefGoogle Scholar
  11. Brosamle, C., & Halpern, M. E. (2009). Nogo-Nogo receptor signalling in PNS axon outgrowth and pathfinding. Molecular and Cellular Neuroscience, 40(4), 401–409.PubMedCrossRefGoogle Scholar
  12. Bussmann, J., & Raz, E. (2015). Chemokine-guided cell migration and motility in zebrafish development. The EMBO Journal, 34(10), 1309–1318.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cole, G. J., & Schachner, M. (1987). Localization of the L2 monoclonal antibody binding site on chicken neural cell adhesion molecule (NCAM) and evidence for its role in NCAM-mediated cell adhesion. Neuroscience Letters, 78(2), 227–232.PubMedCrossRefGoogle Scholar
  14. Dalle Nogare, D., Somers, K., Rao, S., Matsuda, M., et al.(2014). Leading and trailing cells cooperate in collective migration of the zebrafish posterior lateral line primordium. Development, 141(16), 3188–3196.PubMedPubMedCentralCrossRefGoogle Scholar
  15. David, N. B., Sapede, D., Saint-Etienne, L., Thisse, C., et al. (2002). Molecular basis of cell migration in the fish lateral line: Role of the chemokine receptor CXCR4 and of its ligand, SDF1. Proceedings of the National Academy of Sciences of the USA, 99(25), 16297–16302.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Dona, E., Barry, J. D., Valentin, G., Quirin, C., et al. (2013). Directional tissue migration through a self-generated chemokine gradient. Nature, 503(7475), 285–289.PubMedGoogle Scholar
  17. Dorsky, R. I., Moon, R. T., & Raible, D. W. (2000). Environmental signals and cell fate specification in premigratory neural crest. Bioessays, 22(8), 708–716.PubMedCrossRefGoogle Scholar
  18. Dow, E., Siletti, K., & Hudspeth, A. J. (2015). Cellular projections from sensory hair cells form polarity-specific scaffolds during synaptogenesis. Genes and Development, 29(10), 1087–1094.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Drerup, C. M., & Nechiporuk, A. V. (2013). JNK-interacting protein 3 mediates the retrograde transport of activated c-Jun N-terminal kinase and lysosomes. PLoS Genetics, doi: 10.1371/journal.pgen.1003303.
  20. Durdu, S., Iskar, M., Revenu, C., Schieber, N., et al. (2014). Luminal signalling links cell communication to tissue architecture during organogenesis. Nature, 515(7525), 120–124.PubMedCrossRefGoogle Scholar
  21. Eaton, R. C., DiDomenico, R., & Nissanov, J. (1988). Flexible body dynamics of the goldfish C-start: Implications for reticulospinal command mechanisms. The Journal of Neuroscience, 8(8), 2758–2768.PubMedGoogle Scholar
  22. Ernst, S., Liu, K., Agarwala, S., Moratscheck, N., et al. (2012). Shroom3 is required downstream of FGF signalling to mediate proneuromast assembly in zebrafish. Development, 139(24), 4571–4581.PubMedCrossRefGoogle Scholar
  23. Faucherre, A., Pujol-Marti, J., Kawakami, K., & Lopez-Schier, H. (2009). Afferent neurons of the zebrafish lateral line are strict selectors of hair-cell orientation. PLoS ONE, doi: 10.1371/journal.pone.0004477.
  24. Freter, S., Muta, Y., Mak, S. S., Rinkwitz, S., & Ladher, R. K. (2008). Progressive restriction of otic fate: The role of FGF and Wnt in resolving inner ear potential. Development, 135(20), 3415–3424.PubMedCrossRefGoogle Scholar
  25. Friedl, P., & Gilmour, D. (2009). Collective cell migration in morphogenesis, regeneration and cancer. Nature Review of Molecular Cell Biology, 10(7), 445–457.CrossRefGoogle Scholar
  26. Germana, A., Laura, R., Montalbano, G., Guerrera, M. C., et al. (2010). Expression of brain-derived neurotrophic factor and TrkB in the lateral line system of zebrafish during development. Cellular and Molecular Neurobioloy, 30(5), 787–793.CrossRefGoogle Scholar
  27. Ghysen, A., & Dambly-Chaudiere, C. (2004). Development of the zebrafish lateral line. Current Opinion in Neurobiology, 14(1), 67–73.PubMedCrossRefGoogle Scholar
  28. Ghysen, A., & Dambly-Chaudiere, C. (2007). The lateral line microcosmos. Genes and Development, 21(17), 2118–2130.PubMedCrossRefGoogle Scholar
  29. Gilmour, D., Knaut, H., Maischein, H. M., & Nusslein-Volhard, C. (2004). Towing of sensory axons by their migrating target cells in vivo. Nature Neuroscience, 7(5), 491–492.PubMedCrossRefGoogle Scholar
  30. Gompel, N., Dambly-Chaudiere, C., & Ghysen, A. (2001). Neuronal differences prefigure somatotopy in the zebrafish lateral line. Development, 128(3), 387–393.PubMedGoogle Scholar
  31. Grant, K. A., Raible, D. W., & Piotrowski, T. (2005). Regulation of latent sensory hair cell precursors by glia in the zebrafish lateral line. Neuron, 45(1), 69–80.PubMedCrossRefGoogle Scholar
  32. Haas, P., & Gilmour, D. (2006). Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Developmental Cell, 10(5), 673–680.PubMedCrossRefGoogle Scholar
  33. Hans, S., Christison, J., Liu, D., & Westerfield, M. (2007). Fgf-dependent otic induction requires competence provided by Foxi1 and Dlx3b. BMC Developmental Biology, doi: 10.1186/1471-213X-7-5.
  34. Hans, S., Irmscher, A., & Brand, M. (2013). Zebrafish Foxi1 provides a neuronal ground state during inner ear induction preceding the Dlx3b/4b-regulated sensory lineage. Development, 140(9), 1936–1945.PubMedCrossRefGoogle Scholar
  35. Harding, M. J., & Nechiporuk, A. V. (2012). Fgfr-Ras-MAPK signaling is required for apical constriction via apical positioning of Rho-associated kinase during mechanosensory organ formation. Development, 139(17), 3130–3135.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Harding, M. J., McGraw, H. F., & Nechiporuk, A. (2014). The roles and regulation of multicellular rosette structures during morphogenesis. Development, 141(13), 2549–2558.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Itoh, M., & Chitnis, A. B. (2001). Expression of proneural and neurogenic genes in the zebrafish lateral line primordium correlates with selection of hair cell fate in neuromasts. Mechanisms of Development, 102(1–2), 263–266.PubMedCrossRefGoogle Scholar
  38. Janesick, A., Shiotsugu, J., Taketani, M., & Blumberg, B. (2012). RIPPLY3 is a retinoic acid-inducible repressor required for setting the borders of the pre-placodal ectoderm. Development, 139(6), 1213–1224.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kindt, K. S., Finch, G., & Nicolson, T. (2012). Kinocilia mediate mechanosensitivity in developing zebrafish hair cells. Developmental Cell, 23(2), 329–341.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Laguerre, L., Ghysen, A., & Dambly-Chaudiere, C. (2009). Mitotic patterns in the migrating lateral line cells of zebrafish embryos. Developmental Dynamics, 238(5), 1042–1051.PubMedCrossRefGoogle Scholar
  41. Lecaudey, V., Cakan-Akdogan, G., Norton, W. H., & Gilmour, D. (2008). Dynamic Fgf signaling couples morphogenesis and migration in the zebrafish lateral line primordium. Development, 135(16), 2695–2705.PubMedCrossRefGoogle Scholar
  42. Lee, S. A., Shen, E. L., Fiser, A., Sali, A., & Guo, S. (2003). The zebrafish forkhead transcription factor Foxi1 specifies epibranchial placode-derived sensory neurons. Development, 130(12), 2669–2679.PubMedCrossRefGoogle Scholar
  43. Litsiou, A., Hanson, S., & Streit, A. (2005). A balance of FGF, BMP and WNT signalling positions the future placode territory in the head. Development, 132(18), 4051–4062PubMedCrossRefGoogle Scholar
  44. Lopez-Schier, H., & Hudspeth, A. J. (2006). A two-step mechanism underlies the planar polarization of regenerating sensory hair cells. Proceedings of the National Academy of Sciences of the USA, 103(49), 18615–18620.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Lush, M. E., & Piotrowski, T. (2014). Sensory hair cell regeneration in the zebrafish lateral line. Developmental Dynamics, 243(10), 1187–1202.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Martin, S. C., Marazzi, G., Sandell, J. H., & Heinrich, G. (1995). Five Trk receptors in the zebrafish. Developmental Biology, 169(2), 745–758.PubMedCrossRefGoogle Scholar
  47. Matsuda, M., & Chitnis, A. B. (2010). Atoh1a expression must be restricted by Notch signaling for effective morphogenesis of the posterior lateral line primordium in zebrafish. Development, 137(20), 3477–3487.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Matsuda, M., Nogare, D. D., Somers, K., Martin, K., et al. (2013). Lef1 regulates Dusp6 to influence neuromast formation and spacing in the zebrafish posterior lateral line primordium. Development, 140(11), 2387–2397.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Matthews, G., & Fuchs, P. (2010). The diverse roles of ribbon synapses in sensory neurotransmission. Nature Reviews of Neuroscience, 11(12), 812–822.PubMedCrossRefGoogle Scholar
  50. McCarroll, M. N., & Nechiporuk, A. V. (2013). Fgf3 and Fgf10a work in concert to promote maturation of the epibranchial placodes in zebrafish. PLoS ONE, 8(12), e85087.PubMedPubMedCentralCrossRefGoogle Scholar
  51. McCarroll, M. N., Lewis, Z. R., Culbertson, M. D., Martin, B. L., et al. (2012). Graded levels of Pax2a and Pax8 regulate cell differentiation during sensory placode formation. Development, 139(15), 2740–2750.PubMedPubMedCentralCrossRefGoogle Scholar
  52. McGraw, H. F., Drerup, C. M., Culbertson, M. D., Linbo, T., et al. (2011). Lef1 is required for progenitor cell identity in the zebrafish lateral line primordium. Development, 138(18), 3921–3930.PubMedPubMedCentralCrossRefGoogle Scholar
  53. McGraw, H. F., Culbertson, M. D., & Nechiporuk, A. V. (2014). Kremen1 restricts Dkk activity during posterior lateral line development in zebrafish. Development, 141(16), 3212–3221.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Metcalfe, W. K. (1985). Sensory neuron growth cones comigrate with posterior lateral line primordial cells in zebrafish. The Journal of Comparative Neurology, 238(2), 218–224.PubMedCrossRefGoogle Scholar
  55. Metcalfe, W. K., Kimmel, C. B., & Schabtach, E. (1985). Anatomy of the posterior lateral line system in young larvae of the zebrafish. The Journal of Comparative Neurology, 233(3), 377–389.PubMedCrossRefGoogle Scholar
  56. Metcalfe, W. K., Myers, P. Z., Trevarrow, B., Bass, M. B., & Kimmel, C. B. (1990). Primary neurons that express the L2/HNK-1 carbohydrate during early development in the zebrafish. Development, 110(2), 491–504.PubMedGoogle Scholar
  57. Mirkovic, I., Pylawka, S., & Hudspeth, A. J. (2012). Rearrangements between differentiating hair cells coordinate planar polarity and the establishment of mirror symmetry in lateral-line neuromasts. Biology Open, 1(5), 498–505.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Nagiel, A., Andor-Ardo, D., & Hudspeth, A. J. (2008). Specificity of afferent synapses onto plane-polarized hair cells in the posterior lateral line of the zebrafish. The Journal of Neuroscience, 28(34), 8442–8453.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Nagiel, A., Patel, S. H., Andor-Ardo, D., & Hudspeth, A. J. (2009). Activity-independent specification of synaptic targets in the posterior lateral line of the larval zebrafish. Proceedings of the National Academy of Sciences of the USA, 106(51), 21948–21953.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Nechiporuk, A., & Raible, D. W. (2008). FGF-dependent mechanosensory organ patterning in zebrafish. Science, 320(5884), 1774–1777.PubMedCrossRefGoogle Scholar
  61. Nechiporuk, A., Linbo, T., Poss, K. D., & Raible, D. W. (2007). Specification of epibranchial placodes in zebrafish. Development, 134(3), 611–623.PubMedCrossRefGoogle Scholar
  62. Nissen, R. M., Yan, J., Amsterdam, A., Hopkins, N., & Burgess, S. M. (2003). Zebrafish foxi one modulates cellular responses to Fgf signaling required for the integrity of ear and jaw patterning. Development, 130(11), 2543–2554.PubMedCrossRefGoogle Scholar
  63. Nogare DD, Nikaido M, Somers K, Head J, Piotrowski T, Chitnis AB. In toto imaging of the migrating Zebrafish lateral line primordium at single cell resolution. Dev Biol. 2017 Feb 1;422(1):14–23.Google Scholar
  64. Northcutt, R. G. (1989). The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In P. G. S. Coombs & H. Münz (Eds.), Mechanosensory lateral line: Neurobiology and evolution (pp. 17–78). New York: Springer.CrossRefGoogle Scholar
  65. Northcutt, R. G. (1997). Evolution of gnathostome lateral line ontogenies. Brain, Behavior and Evolution, 50(1), 25–37.PubMedCrossRefGoogle Scholar
  66. Northcutt, R. G. (2005). Ontogeny of electroreceptors and their neural circuitry. In T. H. Bullock (Ed.), Electroreception (pp. 112–131). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  67. Northcutt, R. G., & Brandle, K. (1995). Development of branchiomeric and lateral line nerves in the axolotl. The Journal of Comparative Neurology, 355(3), 427–454.PubMedCrossRefGoogle Scholar
  68. Northcutt, R. G., Catania, K. C., & Criley, B. B. (1994). Development of lateral line organs in the axolotl. The Journal of Comparative Neurology, 340(4), 480–514.PubMedCrossRefGoogle Scholar
  69. Nunez, V. A., Sarrazin, A. F., Cubedo, N., Allende, M. L., et al. (2009). Postembryonic development of the posterior lateral line in the zebrafish. Evolution & Development, 11(4), 391–404.CrossRefGoogle Scholar
  70. Obholzer, N., Wolfson, S., Trapani, J. G., Mo, W., et al. (2008). Vesicular glutamate transporter 3 is required for synaptic transmission in zebrafish hair cells. The Journal of Neuroscience, 28(9), 2110–2118.PubMedCrossRefGoogle Scholar
  71. Padanad, M. S., & Riley, B. B. (2011). Pax2/8 proteins coordinate sequential induction of otic and epibranchial placodes through differential regulation of foxi1, sox3 and fgf24. Developmental Biology, 351(1), 90–98.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Parker, G. H. (1904). The function of the lateral-line organs in fishes. Bulletin of U.S. Burrow of Fish, 24, 185–207.Google Scholar
  73. Pieper, M., Eagleson, G. W., Wosniok, W., & Schlosser, G. (2011). Origin and segregation of cranial placodes in Xenopus laevis. Developmental Biology, 360(2), 257–275.PubMedCrossRefGoogle Scholar
  74. Pujol-Marti, J., Baudoin, J. P., Faucherre, A., Kawakami, K., & Lopez-Schier, H. (2010). Progressive neurogenesis defines lateralis somatotopy. Developmental Dynamics, 239(7), 1919–1930.PubMedCrossRefGoogle Scholar
  75. Pujol-Marti, J., Zecca, A., Baudoin, J. P., Faucherre, A., et al. (2012). Neuronal birth order identifies a dimorphic sensorineural map. The Journal of Neuroscience, 32(9), 2976–2987.PubMedCrossRefGoogle Scholar
  76. Pujol-Marti, J., Faucherre, A., Aziz-Bose, R., Asgharsharghi, A., et al. (2014). Converging axons collectively initiate and maintain synaptic selectivity in a constantly remodeling sensory organ. Current Biology, 24(24), 2968–2974.PubMedCrossRefGoogle Scholar
  77. Revenu, C., Streichan, S., Dona, E., Lecaudey, V., et al. (2014). Quantitative cell polarity imaging defines leader-to-follower transitions during collective migration and the key role of microtubule-dependent adherens junction formation. Development, 141(6), 1282–1291.PubMedCrossRefGoogle Scholar
  78. Sarrazin, A. F., Nunez, V. A., Sapede, D., Tassin, V., et al. (2010). Origin and early development of the posterior lateral line system of zebrafish. The Journal of Neuroscience, 30(24), 8234–8244.PubMedCrossRefGoogle Scholar
  79. Sato, A., Koshida, S., & Takeda, H. (2010). Single-cell analysis of somatotopic map formation in the zebrafish lateral line system. Developmental Dynamics, 239(7), 2058–2065.PubMedCrossRefGoogle Scholar
  80. Schlosser, G. (2002). Development and evolution of lateral line placodes in amphibians I. Development. Zoology, 105(2), 119–146.PubMedCrossRefGoogle Scholar
  81. Schuster, K., Dambly-Chaudiere, C., & Ghysen, A. (2010). Glial cell line-derived neurotrophic factor defines the path of developing and regenerating axons in the lateral line system of zebrafish. Proceedings of the National Academy of Sciences of the USA, 107(45), 19531–19536.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Sheets, L., Trapani, J. G., Mo, W., Obholzer, N., & Nicolson, T. (2011). Ribeye is required for presynaptic Ca(V)1.3a channel localization and afferent innervation of sensory hair cells. Development, 138(7), 1309–1319.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Sheets, L., Kindt, K. S., & Nicolson, T. (2012). Presynaptic CaV1.3 channels regulate synaptic ribbon size and are required for synaptic maintenance in sensory hair cells. The Journal of Neuroscience, 32(48), 17273–17286.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Shepherd, I. T., Pietsch, J., Elworthy, S., Kelsh, R. N., & Raible, D. W. (2004). Roles for GFRalpha1 receptors in zebrafish enteric nervous system development. Development, 131(1), 241–249.PubMedCrossRefGoogle Scholar
  85. Shoji, W., Yee, C. S., & Kuwada, J. Y. (1998). Zebrafish semaphorin Z1a collapses specific growth cones and alters their pathway in vivo. Development, 125(7), 1275–1283.PubMedGoogle Scholar
  86. Sidi, S., Busch-Nentwich, E., Friedrich, R., Schoenberger, U., & Nicolson, T. (2004). gemini encodes a zebrafish L-type calcium channel that localizes at sensory hair cell ribbon synapses. The Journal of Neuroscience, 24(17), 4213–4223.PubMedCrossRefGoogle Scholar
  87. Thomas, E. D., Cruz, I. A., Hailey, D. W., & Raible, D. W. (2015). There and back again: development and regeneration of the zebrafish lateral line system. Wiley Interdisciplinary Reviews: Developmental Biology, 4(1), 1–16.PubMedCrossRefGoogle Scholar
  88. Trapani, J. G., & Nicolson, T. (2010). Physiological recordings from zebrafish lateral-line hair cells and afferent neurons. Methods Cellular Biology, 100, 219–231.CrossRefGoogle Scholar
  89. Valdivia, L. E., Young, R. M., Hawkins, T. A., Stickney, H. L., et al.(2011). Lef1-dependent Wnt/beta-catenin signalling drives the proliferative engine that maintains tissue homeostasis during lateral line development. Development, 138(18), 3931–3941.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Venero Galanternik, M., Kramer, K. L., & Piotrowski, T. (2015). Heparan sulfate proteoglycans regulate Fgf signaling and cell polarity during collective cell migration. Cell Reports, doi: 10.1016/j.celrep.2014.12.043.
  91. Wada, H., Ghysen, A., Asakawa, K., Abe, G., et al. (2013). Wnt/Dkk negative feedback regulates sensory organ size in zebrafish. Current Biology, 23(16), 1559–1565.PubMedCrossRefGoogle Scholar
  92. Webb, J. F., & Shirey, J. E. (2003). Postembryonic development of the cranial lateral line canals and neuromasts in zebrafish. Developmental Dynamics, 228(3), 370–385.PubMedCrossRefGoogle Scholar
  93. Whitfield, T. T. (2002). Zebrafish as a model for hearing and deafness. Journal of Neurobiology, 53(2), 157–171.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hillary F. McGraw
    • 1
  • Catherine M. Drerup
    • 2
  • Teresa Nicolson
    • 3
  • Alex V. Nechiporuk
    • 4
    Email author
  1. 1.Division of Cell Biology and BiophysicsUniversity of Missouri Kansas CityKansas CityUSA
  2. 2.Division of Developmental BiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUSA
  3. 3.Vollum InstituteOregon Health & Science UniversityPortlandUSA
  4. 4.Department of CellDevelopmental and Cancer Biology, Oregon Health & Science UniversityPortlandUSA

Personalised recommendations