Skip to main content

Climate Change and the Future of Natural Disturbances in the Central Hardwood Region

  • Chapter
Natural Disturbances and Historic Range of Variation

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 32))

Abstract

Spatial patterns and ecological processes of the USA central hardwood forests reflect past climatic conditions and natural disturbance regimes. Changes in climate can lead to disturbances that exceed their natural range of variation, and the impacts of these changes depend on the vulnerability or resiliency of these ecosystems. Global Circulation Models generally project annual increases in temperature across the Central Hardwood Region over the coming decades, but changes in precipitation are less consistent. More unclear is how climate change affects severity and frequency of natural disturbances, such as severe storms, fires, droughts, floods, and insect outbreaks. We use a time-series satellite data record to map the spatial pattern and severity of broad classes of natural disturbances the southeast region. Between 5 % and 25 % of forest land was affected by disturbance each year since 1985 across the four regions. The time series reveals periodic droughts that are widespread and low-severity but associated with more localized, high-severity disturbances such as fire and insect outbreaks. The map also reveals extensive anthropogenic disturbance across the region in the form of forest conversion related to resource extraction and urban and residential development. Changes in climate and disturbance regimes might affect these forests in the future via altering the exposure, sensitivity, and adaptive capacity of these ecosystems. Changes in climate are highly likely to expose forests to more frequent and severe disturbances, but ultimately how vulnerable or resilient forests are to these changes depends on their sensitivity and capacity to adapt to novel conditions.

© US Government

This contribution has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, H. D., Guardiola-Claramonte, M., Barron-Gafford, G. A., Villegas, J. C., Breshears, D. D., Zou, C. B., Troch, P. A., & Huxman, T. E. (2009). Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global change-type drought. Proceedings of the National Academy of Science of the United States of America, 106, 7063–7066.

    Article  CAS  Google Scholar 

  • Adams, H. D., Macalady, A. K., Breshears, D. D., Allen, C. D., Stephenson, N. L., Saleska, S. R., & Huxman, T. E. (2010). Climate induced tree mortality: Earth system consequences. Eos, Transactions American Geophysical Union, 91, 153–154.

    Article  Google Scholar 

  • Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Limp, J., Allard, G., Running, S. W., Semerci, A., & Cobb, N. (2010). A global overview of drought and head-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684.

    Article  Google Scholar 

  • Ayres, M. P., & Lombardero, M. J. (2000). Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Science of the Total Environment, 262, 263–286.

    Article  CAS  Google Scholar 

  • Baker, W. (1995). Long-term response of disturbance landscapes to human intervention and global change. Landscape Ecology, 10, 143–159.

    Article  Google Scholar 

  • Bowman, D. M., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D’Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., Swetnam, T. W., van der Werf, G. R., & Pyne, S. J. (2009). Fire in the Earth system. Science, 324, 481–484.

    Article  CAS  Google Scholar 

  • Briffia, K. (2000). Annual climate variability in the Holocene: Interpreting the message of ancient trees. Quaternary Science Reviews, 19, 87–105.

    Article  Google Scholar 

  • Brook, G. A., & Nickmann, R. J. (1996). Evidence of late Quaternary environments in Northwestern Georgia from sediments preserved in Red Spider Cave. Physical Geography, 17, 465–484.

    Google Scholar 

  • Carter, L. M., Jones, J. W., Berry, L., Burkett, V., Murley, J. F., Obeysekera, J., Schramm, P. J., Wear, D. (2014). Southeast and the Caribbean. In J. M. Melillo, T. C. Richmond, G. W. Yohe (Eds.), Climate change impacts in the United States: The third national climate assessment (pp. 396–417). US Global Change Research Program. doi:10.7930/J0Z60KZC.

  • Dale, V. H., Joyce, L. A., McNulty, S., & Neilson, R. P. (2000). The interplay between climate change, forests, and disturbances. Science of the Total Environment, 262, 201–204.

    Article  CAS  Google Scholar 

  • Dale, V. H., Joyce, L. A., McNulty, S., Neilson, R. P., Ayres, M. P., Flannigan, M. D., Hanson, P. J., Irland, L. C., Lugo, A. E., Peterson, C. J., Simberloff, D., Swanson, F. J., Stocks, B. J., & Wotton, B. M. (2001). Forest disturbances and climate change. BioScience, 51, 723–734.

    Article  Google Scholar 

  • Dale, V. H., Lannom, K. O., Tharp, M. L., Hodges, D. G., & Fogel, J. (2009). Effects of climate change, land-use change, and invasive species on the ecology of the Cumberland Forests. Canadian Journal of Forest Research, 39, 467–480.

    Article  Google Scholar 

  • Dale, V. H., Tharp, M. L., Lannon, K. O., & Hodges, D. G. (2010). Modeling transient response of forests to climate change. Science of the Total Environment, 408, 1888–1901.

    Article  CAS  Google Scholar 

  • Dale, V. H., Efroymson, R. A., & Kline, K. L. (2011). The land use – Climate change – Energy nexus. Landscape Ecology, 26, 755–773.

    Article  Google Scholar 

  • Delcourt, H. R. (2002). Forests in peril: Tracking deciduous trees from ice-age refuges into the greenhouse world. Granville: McDonald and Woodward Publ Co.

    Google Scholar 

  • Delcourt, P. A., & Delcourt, H. R. (1998). Paleoecological insights on conservation of biodiversity: A focus on species, ecosystems, and landscapes. Ecological Applications, 8, 921–934.

    Google Scholar 

  • Delcourt, H. R., West, D. C., & Delcourt, P. A. (1981). Forests of the southeastern United States: Quantitative maps for aboveground woody biomass, carbon, and dominance of major tree taxa. Ecology, 62, 879–887.

    Article  Google Scholar 

  • Dennison, P. E., Brewer, S. C., Arnold, J. D., & Moritz, M. A. (2014). Large wildfire trends in the western United States, 1984–2011. Geophysical Research Letter, 41, 2928–2933.

    Article  Google Scholar 

  • Dietze, M. C., & Moorcroft, P. R. (2011). Tree mortality in the eastern and central United States: Patterns and drivers. Global Change Biology, 17, 3312–3326.

    Article  Google Scholar 

  • Dukes, J. S., Pontius, J., Orwig, D., Garnas, J. R., Rodgers, V. L., Brazee, N., Cooke, B., Theoharides, K. A., Stange, E. E., Harrington, R., Ehrenfeld, J., Gurevitch, J., Lerdau, M., Stinson, K., Wick, R., & Ayres, M. (2009). Responses of insect pests, pathogens, and invasive species to climate changes in northeastern North America: What can we predict? Canadian Journal of Forest Research, 39, 231–248.

    Article  Google Scholar 

  • Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., & Mearns, L. O. (2000). Climate extremes: Observations, modeling, and impacts. Science, 289, 2068–2074.

    Article  CAS  Google Scholar 

  • Emanuel, K. A. (1987). The dependence of hurricane intensity on climate. Nature, 326, 483–485.

    Article  Google Scholar 

  • Flatley, W. T., Lafon, C. W., Grissino-Mayer, H. D., & LaForest, L. B. (2013). Fire history, related to climate and land use in three southern Appalachian landscapes in the eastern United States. Ecological Applications, 23, 1250–1266.

    Article  Google Scholar 

  • Goetz, S. J., Bond-Lamberty, B., Law, B. E., Hicke, J. A., Huang, C., Houghton, R. A., McNulty, S., O’Halloran, T., Harmon, M., Meddens, A. J. H., Pfeifer, E. M., Mildrexler, D., & Kasischke, E. S. (2012). Observations and assessment of forest carbon dynamics following disturbance in North America. Journal of Geophysical Research, 117(G2), G02022. http://dx.doi.org/10.1029/2011JG001733. Accessed 12 Jan 2015.

    Article  Google Scholar 

  • Greenberg, C. H., Perry, R. W., Franzreb, K. E., Loeb, S. C., Saenz, D., Rudolph, D. C., Winters, E., Fucik, E. M., Kwiatkowski, M. A., Parresol, B. R., Austin, J. D., & Tanner, G. W. (2014). Climate change and wildlife in the southern United States: Potential effects and management options. In J. M. Vose & K. D. Klepzig (Eds.), Climate change adaptation and mitigation management options (pp. 379–420). New York: CRC Press.

    Google Scholar 

  • Hanson, P. J., & Weltzin, J. F. (2000). Drought disturbance from climate change: Response of United States forests. Science of the Total Environment, 262, 205–220.

    Article  CAS  Google Scholar 

  • Hughes, M. J., & Hayes, D. J. (2014). Automated detection of cloud and cloud-shadow in single-date Landsat imagery using neural networks and spatial post-processing. Remote Sensing, 6, 4907–4926.

    Article  Google Scholar 

  • IPCC. (2014). Climate change 2014: Impacts, adaptation, and vulnerability. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Working Group II, contribution to the Fifth assessment report Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Iverson, L. R., & McKenzie, D. (2013). Tree-species range shifts in a changing climate: Detecting, modeling, assisting. Landscape Ecology, 28, 879–889.

    Article  Google Scholar 

  • Iverson, L. R., Schwartz, M. W., & Prasad, A. M. (2004). How fast and far might tree species migrate in the eastern United States due to climate change? Global Ecology and Biogeography, 13, 209–219.

    Article  Google Scholar 

  • Iverson, L., Prasad, A., & Matthews, S. (2008). Modeling potential climate change impacts on the trees of the northeastern United States. Mitigation and Adaptation Strategies for Global Change, 13, 487–516.

    Article  Google Scholar 

  • Jentsch, A., Kreyling, J., & Beierkuhnlein, C. (2007). A new generation of climate-change experiments: Events, not trends. Frontiers in Ecology and the Environment, 5, 365–374.

    Article  Google Scholar 

  • Johnson, A. H. (1992). The role of abiotic stresses in the decline of red spruce in high elevation forests of the eastern United States. Annual Review of Phytopathology, 30, 349–367.

    Article  CAS  Google Scholar 

  • Johnson, D. W., Todd, D. E., & Hanson, P. J. (2008). Effects of throughfall manipulation on soil nutrient status: Results of 12 years of sustained wet and dry treatments. Global Change Biology, 14, 1661–1675.

    Article  Google Scholar 

  • Joyce, L. A., Running, S. W., Breshears, D. D., Dale, V. H., Malmsheimer, R. W., Sampson, R. N., Sohngen, B., Woodall, C. W. (2014). Forests. In J. M. Melillo, T. C. Richmond, G. W. Yohe (Eds.), Climate change impacts in the United States: The third national climate assessment (pp. 175–194). US Global Change Research Program. doi:10.7930/J0Z60KZC.

  • Kardol, P., Todd, D. E., Hanson, P. J., & Mulholland, P. J. (2010). Long-term successional forest dynamics: Species and community responses to climatic variability. Journal of Vegetation Science, 21, 627–642.

    Google Scholar 

  • Karl, T. R., & Knight, R. W. (1998). Secular trends of precipitation amount, frequency, and intensity in the United States. Bulletin of the American Meteorological Society, 79, 231–241.

    Article  Google Scholar 

  • Karl, T. R., Knight, R. W., & Plummer, N. (1995). Trends in high-frequency climate variability in the twentieth century. Nature, 377, 217–220.

    Article  CAS  Google Scholar 

  • Karl, T. R., Melillo, J. M., & Peterson, T. C. (Eds.). (2009). Global climate change impacts in the United States. Cambridge: Cambridge University Press.

    Google Scholar 

  • Keane, R. E., Agee, J. K., Fule, P., Keeley, J. E., Key, C., Kitchen, S. C., Miller, R., & Schulte, L. A. (2008). Ecological effects of large fires on US landscapes: Benefit or catastrophe? International Journal of Wildland Fire, 17, 696–712.

    Article  Google Scholar 

  • Kennedy, R. E., Zhiqiang, Y., & Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sensing of Environment, 114, 2897–2910.

    Article  Google Scholar 

  • Konrad, C. E., Fuhrmann, C. M., Billiot, A., Keim, B. D., Kruk, M. C., Kunkel, K. E., Shafer, M., & Stevens, L. (2013). Climate of the southeast USA: Past, present and future. In K. T. Ingram, K. Dow, L. Carter, & J. Anderson (Eds.), Climate of the southeast United States: Variability, change, impacts and vulnerability (pp. 8–42). Washington, DC: Island Press.

    Chapter  Google Scholar 

  • Manion, P. (1981). Tree disease concepts (2nd ed.). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • McDowell, N., Pockman, W. T., Allen, C., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G., & Yepez, E. A. (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719–739.

    Article  Google Scholar 

  • McDowell, N. G., Beerling, D. J., Breshears, D. D., Fisher, R. A., Raffa, K. F., & Stitt, M. (2011). The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends in Ecology & Evolution, 26, 523–532.

    Article  Google Scholar 

  • McNab, W. H., Spetich, M. A., Perry, R. W., Haywood, J. D., Laird, S. G., Clark, S. L., Hart, J. L., Torreano, S. J., & Buchanan, M. L. (2014). Climate-induced migration of native tree populations and consequences for forest composition. In J. M. Vose & K. D. Klepzig (Eds.), Climate change adaptation and mitigation management options. New York: CRC Press.

    Google Scholar 

  • McNulty, S. G., Vose, J. M., & Swank, W. T. (1996). Potential climate change effects on loblolly pine forest productivity and drainage across the southern United States. Ambio, 25, 449–453.

    Google Scholar 

  • McNulty, S., Caldwell, P., Doyle, T. W., Johnsen, K., Liu, Y., Mohan, J., Prestemon, J., & Sun, G. (2013). Forests and climate change in the southeast USA. In K. T. Ingram, K. Dow, L. Carter, & J. Anderson (Eds.), Climate of the southeast United States: Variability, change, impacts and vulnerability (pp. 165–189). Washington, DC: Island Press.

    Google Scholar 

  • Milner, G. C., & Chaplin, G. (2010). Eastern North American population at A.D. 1500. American Antiquity, 75, 707–726.

    Article  Google Scholar 

  • National Climate Assessment. (2014). US Global Change Research Program. Washington, DC. http://nca2014.globalchange.gov/. Accessed 27 Jan 2015.

  • Oliver, C. D. (2014). Functional restoration of social-forestry systems across spatial and temporal scales. Journal of Sustainable Forestry, 33, S123–S148. doi:10.1080/10549811.2014.884003.

    Article  Google Scholar 

  • Paine, R. T., Tegner, M. J., & Johnson, E. (1998). Compounded perturbations yield ecological surprises. Ecosystems, 1, 535–545.

    Article  Google Scholar 

  • Raffa, K. F., Aukema, B. H., Bentz, B. J., Carroll, A. L., Hicke, J. A., Turner, M. G., & Romme, W. H. (2008). Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. Bioscience, 58, 501–517.

    Article  Google Scholar 

  • Sauer, C. O. (1950). Grassland climax, fire, and man. Journal of Range Management, 3, 16–21.

    Article  Google Scholar 

  • Tran, J. K., Ylioja, T., Billings, R. F., Régnière, J., & Ayres, M. P. (2007). Impact of minimum winter temperatures on the population dynamics of Dendroctonus frontalis. Ecological Applications, 17, 882–899.

    Article  Google Scholar 

  • Turner, M. G., Baker, W. L., Peterson, C. J., & Peet, R. J. (1998). Factors influencing succession: Lessons from large, infrequent disturbances. Ecosystems, 1, 511–523.

    Article  Google Scholar 

  • Ungerer, M. J., Ayres, M. P., & Lombardero, M. J. (1999). Climate and the northern distribution limits of Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae). Journal of Biogeography, 26, 1133–1145.

    Article  Google Scholar 

  • US Global Change Research Program CRP. (2009). Global climate change impacts in the United States. In T. R. Karl, J. M. Melillo, & T. C. Peterson (Eds.), United States Global Change Research Program. New York: Cambridge University Press.

    Google Scholar 

  • USDA Forest Service. (2012). Future of America’s forests and rangelands, Resources Planning Act assessment (General technical report WO, Vol. 87). Washington, DC: USDA Forest Service Washington Office.

    Google Scholar 

  • Vose, J. M., & Klepzig, K. D. (2014). Introduction to climate change adaptation and mitigation management options. In J. M. Vose & K. D. Klepzig (Eds.), Climate change adaptation and mitigation management options. New York: CRC Press.

    Google Scholar 

  • Vose, J. M., Peterson, D. L., & Patel-Weynand, T. (Eds.). (2012). Effects of climatic variability and change on forest ecosystems: A comprehensive science synthesis for the US forest sector (General technical report PNW-GTR, Vol. 870). Portland: USDA Forest Service Pacific Northwest Research Station.

    Google Scholar 

  • Waldron, J. D., Lafon, C. W., Coulson, R. N., Cairns, D. M., Tchakerian, M. D., Birt, A., & Klepzig, K. D. (2007). Simulating the impacts of southern pine beetle and fire on the dynamics of xerophytic pine landscapes in the southern Appalachians. Applied Vegetation Science, 10, 53–64.

    Article  Google Scholar 

  • Wear, D. N., Huggett, R., Ruhong, R., Perryman, B., & Shan, S. (2013). Forecasts of forest conditions in regions of the United States under future scenarios: A technical document supporting the Forest Service 2012 Resources Planning Act Assessment (General technical report SRS-GTR, Vol. 170). Asheville: USDA Forest Service Southern Research Station.

    Google Scholar 

  • Weed, A. S., Ayres, M. P., & Hicke, J. A. (2013). Consequences of climate change for biotic disturbances in North American forests. Ecological Monographs, 83, 441–470.

    Article  Google Scholar 

  • Wells, G. L. (1992). The aeolian landscape of North America from the late Pleistocene. Dissertation, University of Oxford, UK.

    Google Scholar 

  • White, P. B., Soule, P., & van de Gevel, S. (2014). Impacts of human disturbance on the temporal stability of climate-growth relationships in a red spruce forest, southern Appalachian Mountains, USA. Dendrochronologia, 32, 71–77.

    Article  Google Scholar 

  • Williams, D. W., & Liebhold, A. M. (2002). Climate change and the outbreak ranges of two North American bark beetles. Agricultural and Forest Entomology, 4, 87–99.

    Article  Google Scholar 

  • Xi, W., Waldron, J. D., Lafon, C. W., Cairns, D. M., Birt, A. G., Tchakerian, M. D., & Klepzig, K. D. (2009). Modeling long-term effects of altered fire regimes following southern pine beetle outbreaks (North Carolina). Ecological Restoration, 27, 24–2.

    Article  Google Scholar 

  • Yaussy, D. A., Iverson, L. R., & Matthews, S. N. (2013). Competition and climate affects US hardwood-forest tree mortality. Forest Science, 59, 416–430.

    Article  Google Scholar 

  • Zhao, S. Q., Liu, S. G., Sohl, T., Young, C., & Werner, J. (2013). Land use and carbon dynamics in the southeastern United States from 1992 to 2050. Environmental Research Letters, 8, 044022.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the US Department of Energy (DOE). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725. We appreciate review comments provided by Forrest Hoffman, Cathryn Greenberg, and Louis Iverson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia H. Dale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dale, V.H., Hughes, M.J., Hayes, D.J. (2016). Climate Change and the Future of Natural Disturbances in the Central Hardwood Region. In: Greenberg, C., Collins, B. (eds) Natural Disturbances and Historic Range of Variation. Managing Forest Ecosystems, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-21527-3_13

Download citation

Publish with us

Policies and ethics