Skip to main content

A Sub-GHz Multi-ISM-Band ZigBee Receiver Using Function-Reuse and Gain-Boosted N-Path Techniques for IoT Applications

  • Chapter
  • First Online:
Ultra-Low-Power and Ultra-Low-Cost Short-Range Wireless Receivers in Nanoscale CMOS

Abstract

Internet of Things (IoT) represents a competitive and large market for short-range ultra-low-power (ULP) wireless connectivity [1, 2]. According to [3], by 2020 the IoT market will be close to hundreds of billion dollars (annually ~16 billions). To bring down the hardware cost of such massive inter-connections, sub-GHz ULP wireless products compliant with the existing wireless standard such as the IEEE 802.15.4c/d (ZigBee ) will be of great demand, especially for those that can cover all regional ISM bands [e.g., China (433 MHz), Europe (860 MHz), North America (915 MHz) and Japan (960 MHz)]. Together with the obvious goals of small chip area, minimum external components and ultra-low-voltage (ULV) supply (for possible energy harvesting), the design of such a receiver poses significant challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.A. Stankovic, Research directions for the internet of things. IEEE Int. Things J. 1(1), 3–9 (2014)

    Article  Google Scholar 

  2. A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, Internet of things for smart cities. IEEE Int. Things J. 1(1), 22–32 (2014)

    Article  Google Scholar 

  3. Pike Research on Smart Cities. [Online]. http://www.pikeresearch.com/research/smart-cities

  4. J. Sinderen, G. Jong, F. Leong, et al., Wideband UHF ISM-Band transceiver supporting multichannel reception and DSSS modulation. ISSCC Dig. Tech. Papers, pp. 454–455, Feb. 2013

    Google Scholar 

  5. A. Wong, M. Dawkins, G. Devita, et al., A 1 V 5 mA multimode IEEE 802.15.6/bluetooth low-energy WBAN transceiver for biotelemetry applications. ISSCC Dig. Tech. Papers, pp. 300–301, Feb. 2012

    Google Scholar 

  6. B.W. Cook, A. Berny, A. Molnar, S. Lanzisera, K. Pister, Low-power, 2.4-GHz transceiver with passive RX front-end and 400-mV supply. IEEE J. Solid-State Circ. 41, 2767–2775 (2006)

    Article  Google Scholar 

  7. Z. Lin, P.-I. Mak, R.P. Martins, A 0.14-mm2 1.4-mW 59.4-dB-SFDR 2.4 GHz ZigBee/WPAN receiver exploiting a ‘Split-LNTA + 50 % LO’ topology in 65-nm CMOS. IEEE Trans. Microw. Theory Techn. 62(7), 1525–1534 (2014)

    Article  Google Scholar 

  8. A. Mirzaei, H. Darabi, Analysis of imperfections on performance of 4-phase passive-mixer-based high-Q bandpass filters in SAW-less receivers. IEEE Trans. Circ. Syst. I, Reg. Pap. 58(5), 879–892 (2011)

    Article  MathSciNet  Google Scholar 

  9. A. Ghaffari, E. Klumperink, M. Soer, B. Nauta, Tunable High-Q N-path band-pass filters: modeling and verification. IEEE J. Solid-State Circ. 46(5), 998–1010 (2011)

    Google Scholar 

  10. J. Han, R. Gharpurey, Recursive receiver down-converters with multiband feedback and gain-reuse. IEEE J. Solid-State Circ. 43, 1119–1131 (2008)

    Article  Google Scholar 

  11. Z. Lin, P.-I. Mak, R.P. Martins, Analysis and modeling of a gain-boosted N-path switched-capacitor bandpass filter. IEEE Trans. Circ. Syst. I, Reg. Pap. 9, 2560–2568 (2014)

    Article  Google Scholar 

  12. Z. Lin, P.-I. Mak, R. P. Martins, A 0.5 V 1.15 mW 0.2 mm2 Sub-GHz ZigBee receiver supporting 433/860/915/960 MHz ISM bands with zero external components. ISSCC Dig. Tech. Papers, pp. 164–165, Feb. 2014

    Google Scholar 

  13. F. Zhang, Y. Miyahara, B. Otis, Design of a 300-mV 2.4-GHz receiver using transformer-coupled techniques. IEEE J. Solid-State Circ. 48, 3190–3205 (2013)

    Article  Google Scholar 

  14. F. Zhang, K. Wang, J. Koo, Y. Miyahara, B. Otis, A 1.6 mW 300 mV supply 2.4-GHz receiver with –94 dBm sensitivity for energy-harvesting applications. ISSCC Dig. Tech. Papers, pp. 456–457, Feb. 2013

    Google Scholar 

  15. Z. Lin, P.-I. Mak, R.P. Martins, A 1.7 mW 0.22 mm2 2.4 GHz ZigBee RX exploiting a current-reuse blixer + Hybrid filter topology in 65 nm CMOS. ISSCC Dig. Tech. Papers, pp. 448–449, Feb. 2013

    Google Scholar 

  16. Z. Lin, P.-I. Mak, R.P. Martins, A 2.4-GHz ZigBee receiver exploiting an RF-to-BB-current-reuse blixer + hybrid filter topology in 65-nm CMOS. IEEE J. Solid-State Circ. 49, 1333–1344 (2014)

    Article  Google Scholar 

  17. C. Andrews, A. Molnar, Implications of passive mixer transparency for impedance matching and noise figure in passive mixer-first receivers. IEEE Trans. Circ. Syst. I, Reg. Pap. 57, 3092–3103 (2010)

    Article  MathSciNet  Google Scholar 

  18. C. Andrews, A. Molnar, A passive mixer-first receiver with digitally controlled and widely tunable RF interface. IEEE J. Solid-State Circ. 45, 2696–2708 (2010)

    Article  Google Scholar 

  19. M. Soer, E. Klumperink, P. de Boer, F. van Vliet, B. Nauta, Unified frequency domain analysis of switched-series-RC passive mixers and samplers. IEEE Trans. Circ. Syst. I, Reg. Pap. 57(10), 2618–2631 (2010)

    Article  MATH  Google Scholar 

  20. M. Tedeschi, A. Liscidini, R. Castello, Low-power quadrature receivers for ZigBee (IEEE 802.15.4) applications. IEEE J. Solid-State Circ. 45, 1710–1719 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pui-In Mak (Elvis) .

Appendices

Appendix A: Output-Noise PSD at BB for the N-Path Tunable Receiver

The derivation of the output-noise PSD at BB due to RS, 4Gm, Rsw and RF1 is presented here. The model used to obtain the NTFs is shown in Fig. 5.17. For all output-noise PSDs, there are two parts: one is the direct transfer from input RF to BB, while another is from harmonics folding noise. For the latter, increasing the path number N can reduce such contribution. The differential output-noise PSD for Rs, 4Gm, Rsw and RF1 with \( \overline{{ {\text{V}}_{{{\text{n}},{\text{R}}_{\text{S}} }}^{2} }} = 4{\text{KTR}}_{\text{s}} \), \( \overline{{{\text{V}}_{{{\text{n}},4{\text{Gm}}}}^{2} }} = {\raise0.7ex\hbox{${4{\text{KT}}}$} \!\mathord{\left/ {\vphantom {{4{\text{KT}}} {{\text{g}}_{{{\text{m}}1}} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${{\text{g}}_{{{\text{m}}1}} }$}} \), \( \overline{{{\text{V}}_{{{\text{n}},{\text{Rsw}}}}^{2} }} = 4{\text{KTR}}_{\text{sw}} \) and \( \overline{{{\text{V}}_{{{\text{n}},{\text{R}}_{{{\text{F}}1}} }}^{2} }} = 4{\text{KTR}}_{{{\text{F}}1}} \) are given as (A.1)–(A.4),

Fig. 5.17
figure 17

Equivalent noise model of the N-path tunable receiver (Fig. 5.3d) for BB output-noise PSD calculation and simulation. N = 4 is used. The noise sources gm1 and RF1 from the 4Gm are explicitly shown

$$ \overline{{{\text{V}}_{{{\text{n}},{\text{out}},{\text{R}}_{\text{S}} }}^{2} }} = \left\{ {\underbrace {{\left| {{\text{H}}_{{ - 1,{\text{R}}_{\text{S}} }} \left( {{\text{j}}\omega } \right){\text{V}}_{{{\text{n}},{\text{R}}_{\text{S}} }} \left( {{\text{j}}\omega + \omega_{\text{s}} } \right)} \right|^{2} }}_{{{\text{Part}}\,{\text{A}}}} + \underbrace {{\sum\limits_{{{\text{n}} = - \infty ,{\text{n}} \ne - 1}}^{\infty } {\left| {{\text{H}}_{{{\text{n}},{\text{R}}_{\text{S}} }} \left( {{\text{j}}\omega } \right){\text{V}}_{{{\text{n}},{\text{R}}_{\text{S}} }} \left( {{\text{j}}\left( {\omega - {\text{n}}\omega_{\text{s}} } \right)} \right)} \right|^{2} } }}_{{{\text{Part}}\,{\text{B}}}}} \right\} \times 4 $$
(A.1)
$$ \overline{{{\text{V}}_{{{\text{n}},{\text{out}},4{\text{Gm}}}}^{2} }} = \left\{ {\underbrace {{\left| {{\text{H}}_{{ - 1,4{\text{Gm}}}} \left( {{\text{j}}\omega } \right){\text{V}}_{{{\text{n}},4{\text{Gm}}}} \left( {{\text{j}}\omega + \omega_{\text{s}} } \right)} \right|^{2} }}_{{{\text{Part}}\,{\text{A}}}} + \underbrace {{\mathop \sum \limits_{{{\text{n}} = - \infty ,{\text{n}} \ne - 1}}^{\infty } \left| {{\text{H}}_{{{\text{n}},4{\text{Gm}}}} \left( {{\text{j}}\omega } \right){\text{V}}_{{{\text{n}},4{\text{Gm}}}} \left( {{\text{j}}\left( {\omega - {\text{n}}\omega_{\text{s}} } \right)} \right)} \right|^{2} }}_{{{\text{Part}}\,{\text{B}}}}} \right\} \times 4 $$
(A.2)
$$ \overline{{{\text{V}}_{{{\text{n}},{\text{out}},{\text{R}}_{\text{sw}} }}^{2} }} = \left\{ {\underbrace {{\left| {{\text{H}}_{{ - 1,{\text{R}}_{\text{sw}} }} \left( {{\text{j}}\omega } \right){\text{V}}_{{{\text{n}},{\text{R}}_{\text{sw}} }} \left( {{\text{j}}\omega + \omega_{\text{s}} } \right)} \right|^{2} }}_{{{\text{Part}}\,{\text{A}}}} + \underbrace {{\mathop \sum \limits_{{{\text{n}} = - \infty ,{\text{n}} \ne - 1}}^{\infty } \left| {{\text{H}}_{{{\text{n}},{\text{R}}_{\text{sw}} }} \left( {{\text{j}}\omega } \right){\text{V}}_{{{\text{n}},{\text{R}}_{\text{sw}} }} \left( {{\text{j}}\left( {\omega - {\text{n}}\omega_{\text{s}} } \right)} \right)} \right|^{2} }}_{{{\text{Part}}\,{\text{B}}}}} \right\} \times 4 $$
(A.3)
$$ \overline{{{\text{V}}_{{{\text{n}},{\text{out}},{\text{R}}_{{{\text{F}}1}} }}^{2} }} = \left\{ {\underbrace {{\left| {{\text{H}}_{{ - 1,{\text{R}}_{{{\text{F}}1}} }} \left( {{\text{j}}\omega } \right){\text{V}}_{{{\text{n}},{\text{R}}_{{{\text{F}}1}} }} \left( {{\text{j}}\omega + \omega_{\text{s}} } \right)} \right|^{2} }}_{{{\text{Part}}\,{\text{A}}}} + \underbrace {{\mathop \sum \limits_{{{\text{n}} = - \infty ,{\text{n}} \ne - 1}}^{\infty } \left| {{\text{H}}_{{{\text{n}},{\text{R}}_{{{\text{F}}1}} }} \left( {{\text{j}}\omega } \right){\text{V}}_{{{\text{n}},{\text{R}}_{{{\text{F}}1}} }} \left( {{\text{j}}\left( {\omega - {\text{n}}\omega_{\text{s}} } \right)} \right)} \right|^{2} }}_{{{\text{Part}}\,{\text{B}}}}} \right\} \times 4 $$
(A.4)

For the above NTFs, the even order terms (including zero) of n are excluded. The single-ended HTFs for RS, 4Gm, Rsw and RF1 are \( {\text{H}}_{{{\text{n}},{\text{R}}_{\text{S}} }} \left( {{\text{j}}\omega } \right), {\text{H}}_{{{\text{n}},4{\text{Gm}}}} \left( {{\text{j}}\omega } \right),\,{\text{H}}_{{{\text{n}},{\text{R}}_{\text{sw}} }} \left( {{\text{j}}\omega } \right)\,{\text{and}}\,{\text{H}}_{{{\text{n}},{\text{R}}_{{{\text{F}}1}} }} \left( {{\text{j}}\omega } \right) \), respectively. Further details were covered in [11].

Appendix B: Derivation and Modeling of BB Gain and Output Noise for the Function-Reuse Receiver

When considering the memory effect of the capacitor Ci and Co with RF3 sufficiently large, the voltages (i.e., the circuit states) at Ci are independent [19]. In the steady-state, around the clock frequency, the voltages sampling at Ci are υCi(t), jυCi(t), –υCi(t), –jυCi(t), while the voltage sampling at Co is υCO(t), jυCO(t), –υCO(t), –jυCO(t), for LO1–4, respectively. When LO1 is high (K = 1), linear analysis shows the following state-space description for capacitor Ci,

$$ \left\{ \begin{aligned} & \left\{ {\begin{array}{*{20}c} {\frac{{{\text{C}}_{\text{i}} {\text{d}}\upupsilon_{\text{Ci}} \left( {\text{t}} \right)}}{\text{dt}} = \left( {\upsilon_{{{\text{B}}1,{\text{I + }}}} \left( {\text{t}} \right) +\upupsilon_{{{\text{B}}1,{\text{I - }}}} \left( {\text{t}} \right) +\upupsilon_{{{\text{B}}1,{\text{Q + }}}} \left( {\text{t}} \right) +\upupsilon_{{{\text{B}}1,{\text{Q}} - }} \left( {\text{t}} \right)} \right)g_{\text{m3}} } \\ { +\upupsilon_{{{\text{B}}1,{\text{Q - }}}} \left. {\left( {\text{t}} \right)} \right){\text{g}}_{{{\text{m}}3}} } \\ { + \left( {\upupsilon_{{{\text{B2}},{\text{I + }}}} \left( {\text{t}} \right) +\upupsilon_{{{\text{B2}},{\text{I}} - }} \left( {\text{t}} \right) +\upupsilon_{{{\text{B2}},{\text{Q + }}}} \left( {\text{t}} \right)} \right)} \\ { + \left. {\upupsilon_{{{\text{B2}},{\text{Q}} - }} \left( {\text{t}} \right)} \right)\frac{1}{{4{\text{R}}_{\text{L}} }}} \\ \end{array} } \right. \\ & \frac{{\upupsilon_{\text{RF}} \left( {\text{t}} \right) -\upupsilon_{\text{Ci}} \left( {\text{t}} \right)}}{{{\text{R}}_{\text{s}} }} = \frac{{{\text{C}}_{\text{i}} {\text{d}}\upupsilon\left( {\text{t}} \right)}}{\text{dt}} \\ & \quad \quad\upupsilon_{\text{i}} \left( {\text{t}} \right) =\upupsilon_{\text{Ci}} \left( {\text{t}} \right) +\upupsilon_{\text{o}} \left( {\text{t}} \right) + {\text{R}}_{\text{sw}} \frac{{{\text{C}}_{\text{i}} {\text{d}}\upupsilon\left( {\text{t}} \right)}}{\text{dt}} \\ & \quad \quad\upupsilon_{\text{i}} \left( {\text{t}} \right) -\upupsilon_{{{\text{B}}1,{\text{I + }}}} \left( {\text{t}} \right) =\upupsilon_{\text{Ci}} \left( {\text{t}} \right) \\ & \quad \quad\upupsilon_{\text{i}} \left( {\text{t}} \right) -\upupsilon_{{{\text{B}}1,{\text{I - }}}} \left( {\text{t}} \right) = -\upupsilon_{\text{Ci}} \left( {\text{t}} \right) \\ & \quad \quad\upupsilon_{\text{i}} \left( {\text{t}} \right) -\upupsilon_{{{\text{B}}1,{\text{Q + }}}} \left( {\text{t}} \right) = {\text{j}}\upupsilon_{\text{Ci}} \left( {\text{t}} \right) \\ & \quad \quad\upupsilon_{\text{i}} \left( {\text{t}} \right) -\upupsilon_{{{\text{B}}1,{\text{Q}} - }} \left( {\text{t}} \right) = - {\text{j}}\upupsilon_{\text{Ci}} \left( {\text{t}} \right) \\ & \quad \quad\upupsilon_{\text{o}} \left( {\text{t}} \right) +\upupsilon_{\text{co}} \left( {\text{t}} \right) =\upupsilon_{{{\text{B}}2,{\text{I}} + }} \left( {\text{t}} \right) \\ & \quad \quad\upupsilon_{\text{o}} \left( {\text{t}} \right) -\upupsilon_{\text{co}} \left( {\text{t}} \right) =\upupsilon_{{{\text{B}}2,{\text{I}} - }} \left( {\text{t}} \right) \\ & \quad \quad\upupsilon_{\text{o}} \left( {\text{t}} \right) + {\text{j}}\upupsilon_{\text{co}} \left( {\text{t}} \right) =\upupsilon_{{{\text{B}}2,{\text{Q}} + }} \left( {\text{t}} \right) \\ & \quad \quad\upupsilon_{\text{o}} \left( {\text{t}} \right) - {\text{j}}\upupsilon_{\text{co}} \left( {\text{t}} \right) =\upupsilon_{{{\text{B}}2,{\text{Q}} - }} \left( {\text{t}} \right) \\ \\ \end{aligned} \right. $$
(B.1)

Equation (B.1) can be simplified similar to (5.1). Likewise, when LO1 is low, it can be described by (5.4). Thus, it has the same BB HTFs as in gain-boosted N-path SC network [shown also in (5.8)].

The BB NF at VB2,I± (VB2,Q±) is approximately modeled in Fig. 5.18. The BB output noise at VB1,I± (VB1,Q±) are further amplified by two separate BB amplifiers, while in the function-reuse receiver they are amplified by the same BB amplifiers. From simulations, with a large RF3, the model has a good accuracy, while for a small RF3, the error increases for the low-frequency part. This is because the BB gain at VB1,I± (VB1,Q±) gets smaller under a small RF3, and the independent noise sources from the model’s Gm contribute additional noise (Fig. 5.19a, b). The function-reuse receiver has a smaller NF and requires lower power than the separated Gm situation. For the BB gain, this model has a high accuracy (not shown).

Fig. 5.18
figure 18

Schematic to model the BB NF of the functional-reuse receiver at VB2,I±

Fig. 5.19
figure 19

Simulated BB NF from the model and functional-reuse receiver with a a small RF3 and b a larger RF3

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lin, Z., Mak (Elvis), PI., Martins, R.P. (2016). A Sub-GHz Multi-ISM-Band ZigBee Receiver Using Function-Reuse and Gain-Boosted N-Path Techniques for IoT Applications. In: Ultra-Low-Power and Ultra-Low-Cost Short-Range Wireless Receivers in Nanoscale CMOS. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-21524-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21524-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21523-5

  • Online ISBN: 978-3-319-21524-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics