Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 1353 Accesses

Abstract

The immense scope of Internet of Things (IoT) potentiates huge market opportunities for short-range wireless connectivity. To achieve this, it is highly desirable to use ultra-low-power (ULP) and ultra-low-cost (ULC) short-range radios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Kraemer, M.D. Katz, Short-Range, Wireless Communications Emerging Technologies and Applications (Wiley, United Kingdom, 2009)

    Google Scholar 

  2. Wireless World Research Forum, http://www.wireless-world-research.org

  3. IEEE Std 802.15.4. New York: IEEE (2003)

    Google Scholar 

  4. J.A. Gutiérrez, E.H. Callaway, R.L. Barrett, Low-rate Wireless Personal Area Networks (IEEE, New York, 2004)

    Google Scholar 

  5. F. Abdel-Latif, E.A. Hussiec, Ultra Low Power IEEE 802.15.4/ZigBee Compliant Transceiver, Ph.D. thesis, Texas A&M University, Dec 2009

    Google Scholar 

  6. IEEE Standard for Local and Metropolitan Area Networks—Part 15.6: Wireless Body Area Networks, IEEE 802 LAN/MAN Standards Committee, 6 Feb 2012

    Google Scholar 

  7. K.S. Kwak, S. Ullah, N. Ullah, An overview of IEEE 802.15.6 standard, in Proceedings 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), Nov 2010

    Google Scholar 

  8. A. Wang, M. Dawkins, G. Devita et al., A 1 V 5 mA multimode IEEE 802.15.6/bluetooth low-energy WBAN transceiver for biotelemetry applications. IEEE J. Solid-State Circ. 48(1), 186–198 (2010)

    Article  Google Scholar 

  9. N. Hunn, WiFore Consulting, Essentials of Short-Range Wireless (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  10. J. Decuir, Standards Architect, Bluetooth 4.0: Low Energy, CSR plc, 2010

    Google Scholar 

  11. http://e2e.ti.com/blogs_/b/connecting_wirelessly/archive/2010/03/09/bluetooth-low-energy-versus-zigbee.aspx

  12. ZigBee Compared with Bluetooth Low Energy. Green Peak Technologies

    Google Scholar 

  13. Y. Liu, X. Huang, M. Vidojkovic, et al., A 1.9 nJ/b 2.4 GHz multistandard (bluetooth low energy/Zigbee/IEEE802.15.6) transceiver for personal/body-area networks. ISSCC Dig. Tech. Papers, pp. 446–447, Feb 2013

    Google Scholar 

  14. R. Rajan, Ultra-Low Power Short-Range Radio Transceiver, Microsemi Corporation, May 2012

    Google Scholar 

  15. S. Bandyopadhyay, A. Chandrakasan, Platform architecture for solar, thermal and vibration energy combining with MPPT and single inductor, in Proceedings of the Symposium on VLSI circuits, pp. 238–239, June 2011

    Google Scholar 

  16. E. Carlson, K. Strunz, B. Otis, A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J. Solid-State Circ. 45(4), 741–750 (2010)

    Article  Google Scholar 

  17. Y.-C. Shih, B. Otis, An inductorless dc-dc converter for energy harvesting with a 1.2 W bandgap-referenced output controller. IEEE Trans. Circuits Syst. II, Exp. Briefs 58(12), 832–836 (2011)

    Article  Google Scholar 

  18. K. Kadirvel, Y. Ramadass, U. Lyles, et al., A 330 nA energy harvesting charger with battery management for solar and thermoelectric energy harvesting. ISSCC Dig. Tech. Papers, pp. 106–108, Feb 2012

    Google Scholar 

  19. J.-P. Im, S.-W. Wang, K.-H. Lee, et al., A 40 mV transformer reuse self-startup boost converter with MPPT control for thermoelectric energy harvesting. ISSCC Dig. Tech. Papers, pp. 104–106, Feb 2012

    Google Scholar 

  20. F. Zhang, Y. Miyahara, B. Otis, Design of a 300 mV 2.4 GHz receiver using transformer-coupled techniques. IEEE J. Solid-State Circ. 48(12), 3190–3205 (2013)

    Article  Google Scholar 

  21. B. Cook, A. Berny, A. Molnar et al., Low-power 2.4 GHz transceiver with passive RX front-end and 400 mV supply. IEEE J. Solid-State Circ. 41(12), 2757–2766 (2006)

    Article  Google Scholar 

  22. A. Balankutty, S.-A. Yu, Y. Feng, P. Kinget, A 0.6 V zero-IF/low-IF receiver with integrated fractional-N synthesizer for 2.4 GHz ISM-band applications. IEEE J. Solid-State Circ. 45(3), 538–553 (2010)

    Article  Google Scholar 

  23. T.S. Rappaport, Wireless communications principles and practices (Prentice-Hall, New Jersey, 2002)

    Google Scholar 

  24. J.S. Seybold, Introduction to RF propagation (Wiley, Hoboken, 2005)

    Google Scholar 

  25. J. Bae, K. Song, H. Lee et al., A 0.24 nJ/b wireless body-area-network transceiver with scalable double-FSK modulation. IEEE J. Solid-State Circ. 47(1), 310–321 (2012)

    Article  Google Scholar 

  26. R.S. Elliott, Antenna Theory and Design, Revised edn. (Wiley, New York, 2003)

    Google Scholar 

  27. A. Liscidini, M. Tedeschi, R. Castello, Low-power quadrature receivers for ZigBee (IEEE 802.15.4) applications. IEEE J. Solid-State Circ. 45, 1710–1719 (2010)

    Article  Google Scholar 

  28. W. Kluge, F. Poegel, H. Roller et al., A fully integrated 2.4 GHz IEEE 802.15.4-compliant transceiver for ZigBee TM applications. IEEE J. Solid-State Circ. 41, 2767–2775 (2006)

    Article  Google Scholar 

  29. M. Camus, B. Butaye, L. Garcia et al., A 5.4 mW 0.07 mm2 2.4 GHz front-end receiver in 90 nm CMOS for IEEE 802.15.4 WPAN stand. IEEE J. Solid-State Circ. 43, 1372–1383 (2008)

    Article  Google Scholar 

  30. J. Masuch, M. Delgado-Restituto, A 1.1 mW-RX—81.4 dBm sensitivity CMOS transceiver for bluetooth low energy. IEEE Trans. Microw. Theor. Tech. 61(4), 1660–1674 (2013)

    Article  Google Scholar 

  31. M. Contaldo, B. Baneriee, D. Ruffieux et al., A 2.4 GHz BAW-based transceiver for wireless body area networks. IEEE Trans. Biomed. Circ. Syst. 4(6), 391–399 (2010)

    Article  Google Scholar 

  32. J. Ayers, N. Panitantum, K. Mayaram, et al., A 2.4 GHz wireless transceiver with 0.95 nJ/b link energy for multi-hop battery-free wireless sensor networks, in Proceedings of the Symposium on VLSI Circuits, pp. 29–30, June 2010

    Google Scholar 

  33. B. Otis, Y. Chee, J. Rabaey, A 400 µW-RX, 1.6 mW-TX super—regenerative transceiver for wireless sensor networks. ISSCC Dig. Tech. Pap. 1, 396–606 (2005)

    Google Scholar 

  34. P. Popplewell, V. Karam, A. Shamim et al., A 5.2 GHz BFSK transceiver using injection-locking and an on-chip antenna. IEEE J. Solid-State Circ. 43(4), 981–990 (2008)

    Article  Google Scholar 

  35. M. Vidojkovic, X. Huang, P. Harpe et al., A 2.4 GHz ULP OOK single-chip transceiver for healthcare applications. IEEE Trans. Biomed. Circ. Syst. 5(6), 523–534 (2011)

    Article  Google Scholar 

  36. A. Zahabi, M. Anis, M. Ortmanns, 3.1 GHz–3.8 GHz integrated transmission line super-regeneration amplifier with degenerative quenching technique for impulse-FM-UWB transceiver, in Proceedings of European Solid-State Circuits Conference, pp. 387–390, Sept 2011

    Google Scholar 

  37. M. Anis, R. Tielert, N. When, A 10 Mb/s 2.6 mW 6-to-10 GHz UWB impulse transceiver. in Proceedings of IEEE International Conference on Ultra-Wideband (ICUWB), vol. 1, pp. 129–132, Sept 2008

    Google Scholar 

  38. M. Crepaldi, L. Chen, J. Fernandes et al., An ultra-wideband impulse-radio transceiver chipset using synchronized-OOK modulation. IEEE J. Solid-State Circ. 46(10), 2284–2299 (2011)

    Article  Google Scholar 

  39. R.K. Dokania, X. Wang, S. Tallur et al., A low power impulse radio design for body-area-networks. IEEE Trans. Circ. Syst. I, Reg. Pap. 58(7), 1458–1469 (2011)

    Article  MathSciNet  Google Scholar 

  40. S. Gambini, J. Crossley, E. Alon et al., A fully integrated, 290 pJ/bit UWB dual-mode transceiver for cm-range wireless interconnects. IEEE J. Solid-State Circ. 47(3), 586–598 (2012)

    Article  Google Scholar 

  41. S. Solda, M. Caruso, A. Bevilacqua et al., A 5 Mb/s UWB-IR Transceiver front-end for wireless sensor networks in 0.13 µm CMOS. IEEE J. Solid-State Circ. 46(7), 1636–1647 (2011)

    Article  Google Scholar 

  42. X. Wang, Y. Yikun, B. Busze, et al., A meter-range UWB transceiver chipset for around-the-head audio streaming. ISSCC Tech. Papers, pp. 450–452, Feb 2012

    Google Scholar 

  43. D.D. Wentzloff, F.S. Lee, D.C. Daly, et al., Energy efficient pulsed-UWB CMOS circuits and systems, in Proceedings of IEEE International Conference on Ultra-Wideband (ICUWB), pp. 282–287, Sept 2007

    Google Scholar 

  44. Y. Zheng, T. Yan, W. Chyuen, et al., A CMOS carrier less UWB transceiver for WPAN applications. ISSCC Dig. Tech. Papers, pp. 378–387, Feb 2006

    Google Scholar 

  45. M. Anis, M. Ortmanns, N. Wehn, A 2.5 mW 2 Mb/s fully integrated impulse-FM-UWB transceiver in 0.18 μm CMOS. IEEE MTT-S Int. Microwave Symp. Dig. pp. 1–3, June 2011

    Google Scholar 

  46. S. Geng, D. Liu, Y. Li, et. al., A 13.3mW 500 Mb/s IR-UWB transceiver with link-margin enhancement technique for meter-range communications. ISSCC Dig. Tech. Papers, pp. 160–161, Feb 2014

    Google Scholar 

  47. X. Wang, Y. Yu, B. Busze, et al., A meter-range UWB transceiver chipset for around-the-head audio streaming. ISSCC Dig. Tech. Papers, pp. 450–451, Feb 2012

    Google Scholar 

  48. Z. Lin, P.-I. Mak, R.P. Martins, A 0.14 mm2, 1.4 mW, 59.4 dB-SFDR, 2.4 GHz ZigBee/WPAN receiver exploiting a “Split-LNTA + 50 % LO” topology in 65 nm CMOS. IEEE Trans. Microw. Theory Tech. 62, 1525–1534 (2014)

    Article  Google Scholar 

  49. Z. Lin, P.-I. Mak, R. P. Martins, A 1.7 mW 0.22 mm2 2.4 GHz ZigBee RX exploiting a current-reuse blixer + hybrid filter topology in 65 nm CMOS. ISSCC Dig. Tech. Papers, pp. 448–449, Feb 2013

    Google Scholar 

  50. Z. Lin, P.-I. Mak, R.P. Martins, A 2.4-GHz ZigBee receiver exploiting an RF-to-BB-current-reuse blixer + hybrid filter topology in 65 nm CMOS. IEEE J. Solid-State Circ. 49, 1333–1344 (2014)

    Article  Google Scholar 

  51. Z. Lin, P.-I. Mak, R.P. Martins, Analysis and modeling of a gain—boosted N-path switched-capacitor bandpass filter. IEEE Trans. Circ. Syst. I 9, 2560–2568, Sept 2014

    Google Scholar 

  52. Z. Lin, P.-I. Mak, R.P. Martins, A 0.5 V 1.15 mW 0.2 mm2 sub-GHz ZigBee receiver supporting 433/860/915/960 MHz ISM bands with zero external components. ISSCC Dig. Tech. Papers, pp. 164–165, Feb 2014

    Google Scholar 

  53. Z. Lin, P.-I. Mak, R.P. Martins, A sub-GHz multi-ISM-band ZigBee receiver using function-reuse and gain-boosted N-path techniques for IoT applications. IEEE J. Solid-State Circ. 49, 2990–3004 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pui-In Mak (Elvis) .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lin, Z., Mak (Elvis), PI., Martins, R.P. (2016). Introduction. In: Ultra-Low-Power and Ultra-Low-Cost Short-Range Wireless Receivers in Nanoscale CMOS. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-21524-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21524-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21523-5

  • Online ISBN: 978-3-319-21524-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics