Advertisement

Quantum Chemistry on a Photonic Chip

Chapter
  • 786 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In previous chapters we have seen that quantum mechanics permits strong nonlocal correlations which are classically forbidden. It turns out that this makes it very difficult to engineer a classical digital computer to mimic the behaviour of quantum systems—it seems very likely that the general problem is classically intractable. However, we have good reason to believe that a quantum computer should be able to efficiently simulate most quantum systems of interest.

Keywords

Quantum Chemistry Quantum Computer Central Processing Unit Spin Orbital Quantum Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Michael, D. Auld, C. Klumpp, A. Jadhav, W. Zheng, N. Thorne, C.P. Austin, J. Inglese, A. Simeonov, A robotic platform for quantitative high-throughput screening. Assay. Drug. Dev. Technol. 5, 637–657 (2008)CrossRefGoogle Scholar
  2. 2.
    R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phy. Theor. Phy. 21, 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  3. 3.
    P.W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer (1995). arXiv:quant-ph/9508027
  4. 4.
    R. Babbush, A. Perdomo-Ortiz, B. O’Gorman, W. Macready, A. Aspuru-Guzik, Construction of Energy Functions for Lattice Heteropolymer Models: A Case Study in Constraint Satisfaction Programming and Adiabatic Quantum Optimization (2012). arXiv:1211.3422
  5. 5.
    G.J. Halász, A. Perveaux, B. Lasorne, M.A. Robb, F. Gatti, Á. Vibók, Simulation of laser-induced quantum dynamics of the electronic and nuclear motion in the ozone molecule on the attosecond time scale. Phys. Rev. A 86, 043–426 (2012)Google Scholar
  6. 6.
    P.W. Anderson, The resonating valence bond state in la2cuo4 and superconductivity. Science 235(4793), 1196–1198 (1987)CrossRefADSGoogle Scholar
  7. 7.
    R. Moessner, S.L. Sondhi, P. Chandra, Two-dimensional periodic frustrated ising models in a transverse field. Phys. Rev. Lett. 84, 4457–4460 (2000). MayCrossRefADSGoogle Scholar
  8. 8.
    J.W. Britton, B.C. Sawyer, A.C. Keith, C.-C.J. Wang, J.K. Freericks, H. Uys, M.J. Biercuk, J.J. Bollinger, Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012). AprilCrossRefADSGoogle Scholar
  9. 9.
    M. Sarovar, A. Ishizaki, G.R. Fleming, K.B. Whaley, Quantum entanglement in photosynthetic light-harvesting complexes. Nat. Phys. 6, 462–467 (2010). JuneCrossRefGoogle Scholar
  10. 10.
    Dirac. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 123, 714–733 (1929)Google Scholar
  11. 11.
    L. Pauling, The nature of the chemical bond, vol. 2 (Univ. Press, New York, addison-wesley edition, Cornell, 1939)Google Scholar
  12. 12.
    M. Born, J. Robert Oppenheimer, On the quantum theory of molecules. Ann. Phys. 389, 457–484 (1927)Google Scholar
  13. 13.
    I. Kassal, J.D. Whitfield, A. Perdomo-Ortiz, M.-H. Yung, A. Aspuru-Guzik, Simulating chemistry using quantum computers. Ann. Rev. Phys. Chem. 62, 185–207 (2011)CrossRefADSGoogle Scholar
  14. 14.
    J.C. Slater, The theory of complex spectra. Phys. Rev. 34, 1293–1322 (1929)zbMATHCrossRefADSGoogle Scholar
  15. 15.
    I. Shavitt, R.J Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory. Cambridge (2009)Google Scholar
  16. 16.
    W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, 2nd Edition. Wiley (2001)Google Scholar
  17. 17.
    T. Fukuhara, P. Schauß, M. Endres, S. Hild, M. Cheneau, I. Bloch, C. Gross, MicroscopiC Observation Of Magnon Bound States And Their Dynamics (2013). arXiv:1305.6598
  18. 18.
    M.A Nielsen, The fermionic canonical commutation relations and the jordan-wigner transform (2005)Google Scholar
  19. 19.
    P. Jordan, E. Wigner, über das paulische äquivalenzverbot. Z. Phys. 47(9–10), 631–651 (1928)zbMATHCrossRefADSGoogle Scholar
  20. 20.
    G. Ortiz, J.E. Gubernatis, E. Knill, R. Laflamme, Quantum algorithms for fermionic simulations. Phys. Rev. A 64, 022319 (2001)CrossRefADSGoogle Scholar
  21. 21.
    R. Somma, G. Ortiz, J.E. Gubernatis, E. Knill, R. Laflamme, Simulating physical phenomena by quantum networks. Phys. Rev. A 65(4), 042323 (2002)CrossRefADSGoogle Scholar
  22. 22.
    D.S. Abrams, S. Lloyd, Simulation of many-body fermi systems on a universal quantum computer. Phys. Rev. Lett. 79, 2586–2589 (1997)CrossRefADSGoogle Scholar
  23. 23.
    A.Y. Kitaev, A.H. Shen, M.N. Vyalyi, Classical and Quantum Computation. Amer Mathematical Society (2002)Google Scholar
  24. 24.
    Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information (Cambridge Series on Information and the Natural Sciences). Cambridge University Press, 1 edition (2004)Google Scholar
  25. 25.
    J. Whitfield, J. Biamonte, A. Aspuru-Guzik, Simulation of electronic structure Hamiltonians using quantum computers. Mol. Phys. 109, 735–750 (2011). MarchCrossRefADSGoogle Scholar
  26. 26.
    D. Wecker, B. Bauer, B.K. Clark, M.B. Hastings, M. Troyer, Can quantum chemistry be performed on a small quantum computer? ( 2013). arXiv:1312.1695
  27. 27.
    O. Johnston, The Illusion of Life: Disney Animation. Disney Editions (1981)Google Scholar
  28. 28.
    Alán Aspuru-Guzik, Anthony D. Dutoi, Peter J. Love, Martin Head-Gordon, Simulated quantum computation of molecular energies. Science 309(5741), 1704–1707 (2005)CrossRefADSGoogle Scholar
  29. 29.
    B.P. Lanyon, J.D. Whitfield, G.G. Gillett, M.E. Goggin, M.P. Almeida, I. Kassal, J.D. Biamonte, M. Mohseni, B.J. Powell, M. Barbieri, A. Aspuru-Guzik, A.G. White, Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010)CrossRefGoogle Scholar
  30. 30.
    S. Lloyd, Universal quantum simulators. Science 273, 1073–1078 (1996)zbMATHMathSciNetCrossRefADSGoogle Scholar
  31. 31.
    J. Kempe, A. Kitaev, O. Regev, The Complexity of the Local Hamiltonian Problem. arXiv:quant-ph/0406180
  32. 32.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations