Skip to main content

Quantum Chemistry on a Photonic Chip

  • Chapter
  • First Online:
Complexity and Control in Quantum Photonics

Part of the book series: Springer Theses ((Springer Theses))

  • 923 Accesses

Abstract

In previous chapters we have seen that quantum mechanics permits strong nonlocal correlations which are classically forbidden. It turns out that this makes it very difficult to engineer a classical digital computer to mimic the behaviour of quantum systems—it seems very likely that the general problem is classically intractable. However, we have good reason to believe that a quantum computer should be able to efficiently simulate most quantum systems of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that this question is related to the Extended Church-Turing Thesis, discussed in Sect. 6.3.2 of this thesis.

References

  1. S. Michael, D. Auld, C. Klumpp, A. Jadhav, W. Zheng, N. Thorne, C.P. Austin, J. Inglese, A. Simeonov, A robotic platform for quantitative high-throughput screening. Assay. Drug. Dev. Technol. 5, 637–657 (2008)

    Article  Google Scholar 

  2. R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phy. Theor. Phy. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  3. P.W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer (1995). arXiv:quant-ph/9508027

  4. R. Babbush, A. Perdomo-Ortiz, B. O’Gorman, W. Macready, A. Aspuru-Guzik, Construction of Energy Functions for Lattice Heteropolymer Models: A Case Study in Constraint Satisfaction Programming and Adiabatic Quantum Optimization (2012). arXiv:1211.3422

  5. G.J. Halász, A. Perveaux, B. Lasorne, M.A. Robb, F. Gatti, Á. Vibók, Simulation of laser-induced quantum dynamics of the electronic and nuclear motion in the ozone molecule on the attosecond time scale. Phys. Rev. A 86, 043–426 (2012)

    Google Scholar 

  6. P.W. Anderson, The resonating valence bond state in la2cuo4 and superconductivity. Science 235(4793), 1196–1198 (1987)

    Article  ADS  Google Scholar 

  7. R. Moessner, S.L. Sondhi, P. Chandra, Two-dimensional periodic frustrated ising models in a transverse field. Phys. Rev. Lett. 84, 4457–4460 (2000). May

    Article  ADS  Google Scholar 

  8. J.W. Britton, B.C. Sawyer, A.C. Keith, C.-C.J. Wang, J.K. Freericks, H. Uys, M.J. Biercuk, J.J. Bollinger, Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012). April

    Article  ADS  Google Scholar 

  9. M. Sarovar, A. Ishizaki, G.R. Fleming, K.B. Whaley, Quantum entanglement in photosynthetic light-harvesting complexes. Nat. Phys. 6, 462–467 (2010). June

    Article  Google Scholar 

  10. Dirac. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 123, 714–733 (1929)

    Google Scholar 

  11. L. Pauling, The nature of the chemical bond, vol. 2 (Univ. Press, New York, addison-wesley edition, Cornell, 1939)

    Google Scholar 

  12. M. Born, J. Robert Oppenheimer, On the quantum theory of molecules. Ann. Phys. 389, 457–484 (1927)

    Google Scholar 

  13. I. Kassal, J.D. Whitfield, A. Perdomo-Ortiz, M.-H. Yung, A. Aspuru-Guzik, Simulating chemistry using quantum computers. Ann. Rev. Phys. Chem. 62, 185–207 (2011)

    Article  ADS  Google Scholar 

  14. J.C. Slater, The theory of complex spectra. Phys. Rev. 34, 1293–1322 (1929)

    Article  MATH  ADS  Google Scholar 

  15. I. Shavitt, R.J Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory. Cambridge (2009)

    Google Scholar 

  16. W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, 2nd Edition. Wiley (2001)

    Google Scholar 

  17. T. Fukuhara, P. Schauß, M. Endres, S. Hild, M. Cheneau, I. Bloch, C. Gross, MicroscopiC Observation Of Magnon Bound States And Their Dynamics (2013). arXiv:1305.6598

  18. M.A Nielsen, The fermionic canonical commutation relations and the jordan-wigner transform (2005)

    Google Scholar 

  19. P. Jordan, E. Wigner, über das paulische äquivalenzverbot. Z. Phys. 47(9–10), 631–651 (1928)

    Article  MATH  ADS  Google Scholar 

  20. G. Ortiz, J.E. Gubernatis, E. Knill, R. Laflamme, Quantum algorithms for fermionic simulations. Phys. Rev. A 64, 022319 (2001)

    Article  ADS  Google Scholar 

  21. R. Somma, G. Ortiz, J.E. Gubernatis, E. Knill, R. Laflamme, Simulating physical phenomena by quantum networks. Phys. Rev. A 65(4), 042323 (2002)

    Article  ADS  Google Scholar 

  22. D.S. Abrams, S. Lloyd, Simulation of many-body fermi systems on a universal quantum computer. Phys. Rev. Lett. 79, 2586–2589 (1997)

    Article  ADS  Google Scholar 

  23. A.Y. Kitaev, A.H. Shen, M.N. Vyalyi, Classical and Quantum Computation. Amer Mathematical Society (2002)

    Google Scholar 

  24. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information (Cambridge Series on Information and the Natural Sciences). Cambridge University Press, 1 edition (2004)

    Google Scholar 

  25. J. Whitfield, J. Biamonte, A. Aspuru-Guzik, Simulation of electronic structure Hamiltonians using quantum computers. Mol. Phys. 109, 735–750 (2011). March

    Article  ADS  Google Scholar 

  26. D. Wecker, B. Bauer, B.K. Clark, M.B. Hastings, M. Troyer, Can quantum chemistry be performed on a small quantum computer? ( 2013). arXiv:1312.1695

  27. O. Johnston, The Illusion of Life: Disney Animation. Disney Editions (1981)

    Google Scholar 

  28. Alán Aspuru-Guzik, Anthony D. Dutoi, Peter J. Love, Martin Head-Gordon, Simulated quantum computation of molecular energies. Science 309(5741), 1704–1707 (2005)

    Article  ADS  Google Scholar 

  29. B.P. Lanyon, J.D. Whitfield, G.G. Gillett, M.E. Goggin, M.P. Almeida, I. Kassal, J.D. Biamonte, M. Mohseni, B.J. Powell, M. Barbieri, A. Aspuru-Guzik, A.G. White, Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010)

    Article  Google Scholar 

  30. S. Lloyd, Universal quantum simulators. Science 273, 1073–1078 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. J. Kempe, A. Kitaev, O. Regev, The Complexity of the Local Hamiltonian Problem. arXiv:quant-ph/0406180

  32. http://www.psicode.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Shadbolt .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shadbolt, P. (2016). Quantum Chemistry on a Photonic Chip. In: Complexity and Control in Quantum Photonics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-21518-1_5

Download citation

Publish with us

Policies and ethics