Entanglement and Nonlocality Without a Shared Frame

Part of the Springer Theses book series (Springer Theses)


In many quantum information tasks, the basic scenario is one of two parties, Alice and Bob, who share an entangled state \( | \psi _{AB} \rangle \) originating from a source. Alice and Bob may wish to use this state to communicate securely (Sect.  1.4.2), violate a Bell inequality (Sect.  1.3.8), perform teleportation, tomography (Sect.  2.6), or to evaluate the degree of entanglement of the state (Sect.  1.3.7). Perhaps they are space-like separated, maybe they are in the same lab, perhaps \( | \psi _{AB} \rangle \) is a resource state in a quantum computer—we have already discussed many such scenarios.


Entangle State Separable State Bell Inequality Polarization Rotation Werner State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)CrossRefADSGoogle Scholar
  2. 2.
    J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, J.-W. Pan, Direct and full-scale experimental verifications towards ground-satellite quantum key distribution. Nat. Photonics 7, 387–393 (2013). MayCrossRefADSGoogle Scholar
  3. 3.
    R. Ursin, T. Jennewein, J. Kofler, J.M. Perdigues, L. Cacciapuoti, C.J. de Matos, M. Aspelmeyer, A. Valencia, T. Scheidl, A. Acin, C. Barbieri, G. Bianco, C. Brukner, J. Capmany, S. Cova, D. Giggenbach, W. Leeb, R.H. Hadfield, R. Laflamme, N. Lütkenhaus, G. Milburn, M. Peev, T. Ralph, J. Rarity, R. Renner, E. Samain, N. Solomos, W. Tittel, J.P. Torres, M. Toyoshima, A. Ortigosa-Blanch, V. Pruneri, P. Villoresi, I. Walmsley, G. Weihs, H. Weinfurter, M. Zukowski, A. Zeilinger, Space-quest, experiments with quantum entanglement in space. Europhys. News 40, 26–29 (2009). MayCrossRefADSGoogle Scholar
  4. 4.
    P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R.W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J.G. Rarity, A.O. Niskanen, M.G. Thompson, J.L. O’Brien, Reference frame independent quantum key distribution server with telecom tether for on-chip client (2013). arXiv:1308.3436
  5. 5.
    C.H. Bennett, D.P. Divincenzo, C.A. Fuchs, T. Mor, E. Rains, P.W. Shor, J.A. Smolin, W.K. Wootters, Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070–1091 (1999). FebruaryMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Y.C. Liang, N. Harrigan, S. D. Bartlett, T. Rudolph, Nonclassical correlations from randomly chosen local measurements. Phys. Rev. Lett. 104, 050401 (2010)Google Scholar
  7. 7.
    J.J. Wallman, Y.-C. Liang, S.D. Bartlett, Generating nonclassical correlations without fully aligning measurements. Phys. Rev. A 83, 022110 (2011). FebruaryCrossRefADSGoogle Scholar
  8. 8.
    A. Cabello, Bell’s theorem without inequalities and without alignments. Phys. Rev. Lett. 91, 230403 (2003). DecemberMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    J.J. Wallman, S.D. Bartlett, Observers can always generate nonlocal correlations without aligning measurements by covering all their bases. Phys. Rev. A 85, 024101 (2012). FebruaryCrossRefADSGoogle Scholar
  10. 10.
    D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Measurement of qubits. Phys. Rev. A 64, 052312 (2001)Google Scholar
  11. 11.
    F. Mezzadri, How to generate random matrices from the classical compact groups. NOTICES of the AMS 54, 592–604 (2007)Google Scholar
  12. 12.
    J.L. O’Brien, G.J. Pryde, A.G. White, T.C. Ralph, D. Branning, Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003)CrossRefADSGoogle Scholar
  13. 13.
    E.S. Gómez, G. Cañas, J.F. Barra, A. Cabello, Gustavo Lima, Bell tests with random measurements require very high detection efficiencies. Phys. Rev. A 88, 022102 (2013). AugCrossRefADSGoogle Scholar
  14. 14.
    M.S. Palsson, J.J. Wallman, A.J. Bennet, G.J. Pryde, Experimentally demonstrating reference-frame-independent violations of bell inequalities. Phys. Rev. A 86, 032322 (2012). SepCrossRefADSGoogle Scholar
  15. 15.
    R. Chaves, N. Brunner, Testing nonlocality of a single photon without a shared reference frame. Phys. Rev. A 88, 012111 (2013)Google Scholar
  16. 16.
    S.M. Tan, D.F. Walls, M.J. Collett, Nonlocality of a single photon. Phys. Rev. Lett. 66, 252–255 (1991). JanCrossRefADSGoogle Scholar
  17. 17.
    A. Laing, V. Scarani, J.G. Rarity, J.L. O’Brien, Reference frame independent quantum key distribution. Phys. Rev. A 82, 012304 (2010)Google Scholar
  18. 18.
    J. Wabnig, D. Bitauld, H.W. Li, A. Laing, J.L. O’Brien, A.O. Niskanen, Demonstration of free-space reference frame independent quantum key distribution. New J. Phys. 15(7), 073001 (2013). JulyCrossRefADSGoogle Scholar
  19. 19.
    V. D’Ambrosio, E. Nagali, S.P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, F. Sciarrino, Complete experimental toolbox for alignment-free quantum communication. Nat. Commun. 3, 961 (2012)Google Scholar
  20. 20.
    J.A. Slater, C. Branciard, N. Brunner, W. Tittel, Device-dependent and device-independent quantum key distribution without a shared reference frame (2013). arXiv:1311.3343

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations