A Reconfigurable Two-Qubit Chip

Part of the Springer Theses book series (Springer Theses)


The discovery and development of universal computing machines is one of the greatest scientific accomplishments of the 20th century. The Church-Turing thesis—that all calculable functions can be computed by a particularly simple type of machine—is generally expressed as a statement about mathematical functions, and the evaluation of numbers.


Entangle State Resistive Heater Bell Inequality Photon Pair CNOT Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. Deutsch, Quantum theory, the church-turing principle and the universal quantum computer. Proc. Roy. Soc. Lond. A 400, 97–117 (1985)zbMATHMathSciNetCrossRefADSGoogle Scholar
  2. 2.
    R. Raussendorf, H.J. Briegel, A one-way quantum computer. Phys. Rev. Lett. 86 (2001)Google Scholar
  3. 3.
    R. Raussendorf, D. Browne, H. Briegel, Measurement-based quantum computation on cluster states. Phys. Rev. A 68(2) (2003)Google Scholar
  4. 4.
    H.J. Briegel, R. Raussendorf, Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910–913 (2001)Google Scholar
  5. 5.
    D.E. Browne, T. Rudolph, Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95(1) (2005)Google Scholar
  6. 6.
    J. Sun, E. Timurdogan, A. Yaacobi, E.S. Hosseini, M.R. Watts, Large-scale nanophotonic phased array. Nature 493, 195 (2013)Google Scholar
  7. 7.
    A. Politi, J.C.F. Matthews, M.G. Thompson, J.L. O’Brien, Integrated quantum photonics. IEEE J. Sel. Topics Quant. Electron. 15, 1673–1684 (2009)Google Scholar
  8. 8.
    A. Laing, V. Scarani, J.G. Rarity, J.L. O’Brien, Reference frame independent quantum key distribution. Phys. Rev. Lett. (2010)Google Scholar
  9. 9.
    G.D. Marshall, A. Politi, J.C.F. Matthews, P. Dekker, M. Ams, M.J. Withford, J.L. O’Brien, Laser written waveguide photonic quantum circuits. Opt. Express 17, 12546–12554 (2009)Google Scholar
  10. 10.
    A. Peruzzo, A. Laing, A. Politi, T. Rudolph, J.L. O’Brien, Multimode quantum interference of photons in multiport integrated devices. Nat. Commun. 2, 224+ (2011)Google Scholar
  11. 11.
    J.C.F. Matthews, A. Politi, A. Stefanov, J.L. O’Brien, Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photon. 3, 346–350 (2009)Google Scholar
  12. 12.
    J.C.F. Matthews, A. Politi, D. Bonneau, J.L. O’Brien, Heralding two-photon and four-photon path entanglement on a chip. Phys. Rev. Lett. 107, 163602 (2011)Google Scholar
  13. 13.
    D. Bonneau, M. Lobino, P. Jiang, C.M. Natarajan, M.G. Tanner, R.H. Hadfield, S.N. Dorenbos, V. Zwiller, M.G. Thompson, J.L. O’Brien, Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices. Phys. Rev. Lett. 108(5), 053601 (2012)Google Scholar
  14. 14.
    CIP Technologies, Formerly British Telecom, now HuaweiGoogle Scholar
  15. 15.
    D. Dai, Z. Wang, D. Liang, J.E. Bower, On-chip polarization handling for silicon photonics. SPIE Newsroom (2012)Google Scholar
  16. 16.
    A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, P. Mataloni, Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566 (2011)Google Scholar
  17. 17.
    G. Lifante, Integrated Photonics: Fundamentals (Wiley, New York, 2003)Google Scholar
  18. 18.
    S. Lloyd, Almost any quantum logic gate is universal. Phys. Rev. Lett. 75, 346–349 (1995)Google Scholar
  19. 19.
    D.P. DiVincenzo, Quantum computation. Science 270(5234), 255–261 (1995)Google Scholar
  20. 20.
    T.C. Ralph, N.K. Langford, T.B. Bell, A.G. White, Linear optical controlled-NOT gate in the coincidence basis. Phys. Rev. A 65, 062324+ (2002)Google Scholar
  21. 21.
    H.F. Hofmann, S. Takeuchi, Quantum phase gate for photonic qubits using only beam splitters and postselection. Phys. Rev. A 66, 024308+ (2002)Google Scholar
  22. 22.
    J. Franson, B.C. Jacobs, T.B. Pittman, Quantum logic operations using linear optical elements, in Nonlinear Optics: Materials, Fundamentals and Applications, p. FA3 (Optical Society of America, 2002)Google Scholar
  23. 23.
    T.B. Pittman, B.C. Jacobs, J.D. Franson, Demonstration of nondeterministic quantum logic operations using linear optical elements. Phys. Rev. Lett. 88(25), 257902 (2002)Google Scholar
  24. 24.
    J.L. O’Brien, G.J. Pryde, A.G. White, T.C. Ralph, D. Branning, Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003)Google Scholar
  25. 25.
    S. Gasparoni, J.W. Pan, P. Walther, T. Rudolph, A. Zeilinger, Realization of a photonic controlled-NOT gate sufficient for quantum computation. Phys. Rev. Lett. 93, 020504+ (2004)Google Scholar
  26. 26.
    T.C. Ralph, Scaling of multiple postselected quantum gates in optics. Phys. Rev. A 70, 012312 (2004)CrossRefADSGoogle Scholar
  27. 27.
    J.L. O’Brien, G.J. Pryde, A. Gilchrist, D.F.V. James, N.K. Langford, T.C. Ralph, A.G. White, Quantum process tomography of a controlled-NOT gate. Phys. Rev. Lett. 93, 080502+ (2004)Google Scholar
  28. 28.
    A. Politi, J.C.F. Matthews, J.L. O’Brien, Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221+ (2009)Google Scholar
  29. 29.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge Series on Information and the Natural Sciences), 1 edn (Cambridge University Press, Cambridge, 2004)Google Scholar
  30. 30.
    S.M. Tan, D.F. Walls, M.J. Collett, Nonlocality of a single photon. Phys. Rev. Lett. 66, 252–255 (1991). JanCrossRefADSGoogle Scholar
  31. 31.
    H.W. Li, J. Wabnig, D. Bitauld, P. Shadbolt, A. Politi, A. Laing, J.L. O’Brien, A.O. Niskanen, Calibration and high fidelity measurement of a quantum photonic chip. New J. Phys. 15(6), 063017 (2013). JuneCrossRefADSGoogle Scholar
  32. 32.
    E. Knill, D. Leibfried, R. Reichle, J. Britton, R.B. Blakestad, J.D. Jost, C. Langer, R. Ozeri, S. Seidelin, D.J. Wineland, Randomized benchmarking of quantum gates. Phys. Rev. A 77 (2008)Google Scholar
  33. 33.
    D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Measurement of qubits. Phys. Rev. A 64, 052312+ (2001)Google Scholar
  34. 34.
    G.C. Stokes, Trans. Cambr. Phil. Soc. 9, 399 (1852)ADSGoogle Scholar
  35. 35.
    M. Paris, J. Rehacek, Quantum State Estimation (Springer-Verlag, Berlin, 2004)zbMATHCrossRefGoogle Scholar
  36. 36.
    A. Montanaro, A. Ambainis, S. Aaronson, D. Chen, D. Gottesman, V. Liew, Three quantum learning algorithms (2013)Google Scholar
  37. 37.
    N.K. Langford, Encoding, manipulating and measuring quantum information in optics. Ph.D. thesisGoogle Scholar
  38. 38.
    W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state. arXiv:0809.4277 (2008)
  39. 39.
    D. Gross, Y.-K. Liu, S.T. Flammia, S. Becker, J. Eisert, Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105(15), 150401 (2010)Google Scholar
  40. 40.
    M. Cramer, M.B. Plenio, S.T. Flammia, R. Somma, D. Gross, S.D. Bartlett, O. Landon-Cardinal, D. Poulin, Y.-K. Liu, Efficient quantum state tomography. Nat. Commun. 1 (2010)Google Scholar
  41. 41.
    A.G. White, A. Gilchrist, G.J. Pryde, J.L. O’Brien, M.J. Bremner, N.K. Langford, Measuring two-qubit gates. J. Opt. Soc. Am. B 24, 172–183 (2007)Google Scholar
  42. 42.
    G. Balló, K.M. Hangos, Parameter estimation of quantum processes using convex optimization. ArXiv e-prints (2010)Google Scholar
  43. 43.
    A. Gilchrist, N.K. Langford, M.A. Nielsen, Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71, 062310+ (2009)Google Scholar
  44. 44.
    B.P. Lanyon, M. Barbieri, M.P. Almeida, T. Jennewein, T.C. Ralph, K.J. Resch, G.J. Pryde, J.L. O/’Brien, A. Gilchrist, A.G. White, Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5, 134–140 (2008)Google Scholar
  45. 45.
    M. Mohseni, P. Rebentrost, S. Lloyd, A. Guzik, Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 174106+ (2008)Google Scholar
  46. 46.
    M.B. Plenio, S.F. Huelga, Dephasing-assisted transport: Quantum networks and biomolecules. New J. Phys. 10(11), 113019+ (2008)Google Scholar
  47. 47.
    F. Masillo, G. Scolarici, S. Sozzo, Proper versus improper mixtures: Toward a quaternionic quantum mechanics. Theor. Math. Phys. 160, 1006–1013 (2009)Google Scholar
  48. 48.
    K. Zyczkowski, H.-J. Sommers, Induced measures in the space of mixed quantum states. J. Phys. A. 34, 7111+ (2001)Google Scholar
  49. 49.
    J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, R. Hadfield, G. D. Marshall, V. Zwiller, J. Rarity, J. OBrien, M. Thompson, On-chip quantum interference between two silicon waveguide sources. arXiv:1304.1490 (2013)
  50. 50.
    N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W.J. Munro, K. Shimizu, K. Yamada, Y. Tokura, H. Takesue, A monolithically integrated polarization entangled photon pair source on a silicon chip. Sci. Rep. 2 (2012)Google Scholar
  51. 51.
    S. Azzini, D. Grassani, M.J. Strain, M. Sorel, L.G. Helt, J.E. Sipe, M. Liscidini, M. Galli, D. Bajoni, Ultra-low power generation of twin photons in a compact silicon ring resonator. Opt. Express 20(21), 23100–23107 (2012)Google Scholar
  52. 52.
    H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S. Itabashi, Generation of polarization entangledphoton pairs using silicon wirewaveguide. Opt. Express 16(8), 5721–5727 (2008)Google Scholar
  53. 53.
    J.E. Sharping, K.F. Lee, M.A. Foster, A.C. Turner, B.S. Schmidt, M. Lipson, A.L. Gaeta, P. Kumar, Generation of correlated photons in nanoscale silicon waveguides. Opt. Express 14(25), 12388–12393 (2006)Google Scholar
  54. 54.
    D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C.M. Natarajan, M.G. Tanner, R.H. Hadfield, S.N. Dorenbos, V. Zwiller, J.L. O’Brien, M.G. Thompson, Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits (2012)Google Scholar
  55. 55.
    A. Martin, O. Alibart, M.P. De Micheli, D.B. Ostrowsky, S. Tanzilli, A quantum relay chip based on telecommunication integrated optics technology. New J. Phys. 14(2), 025002 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations