Introduction and Essential Physics

Part of the Springer Theses book series (Springer Theses)


Over the past century, it has become increasingly apparent that Nature, at its most fundamental level, resists analogy with human experience. Quantum theory predicts behaviour which is not explained by any classical model. As a result, we have come to understand that certain intuitive beliefs concerning the potential capability of machines do not hold.


Spontaneous Parametric Downconversion (SPDC) Integrated Quantum Photonics (IQP) Polarization Encoding Single-photon Fock State Quantum Technologies 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.A. Nielsen, I.L. Chuang, in Quantum Computation and Quantum Information (Cambridge Series on Information and the Natural Sciences), 1st edn. (Cambridge University Press, 2004)Google Scholar
  2. 2.
    J. Preskill, in Quantum Information Lecture Notes (Chapter 1)Google Scholar
  3. 3.
    P.A.M. Dirac, The Principles of Quantum Mechanics, 4th edn. (Oxford University Press, New York, 1982)Google Scholar
  4. 4.
    K. Hannabuss, in An Introduction to Quantum Theory (Oxford University Press, 1997)Google Scholar
  5. 5.
    S. Aaronson, in Quantum Computing since Democritus (Cambridge University Press, 2013)Google Scholar
  6. 6.
    A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. Online Arch. (Prola) 47, 777–780 (1935)zbMATHADSGoogle Scholar
  7. 7.
    M.B. Plenio, S. Virmani, An introduction to entanglement measures. Quantum Inf. Comput. 7, 1–51 (2006)Google Scholar
  8. 8.
    D.M. Greenberger, M.A. Horne, A. Shimony, A. Zeilinger, Bell’s theorem without inequalities. Am. J. Phys. 58(12) (1990)Google Scholar
  9. 9.
    C.H. Bennett, S. Popescu, B. Schumacher, Concentrating partial entanglement by local operations. Phys. Rev. A 53(4), 2046–2052 (1996)Google Scholar
  10. 10.
    N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Bell nonlocality (2013). arXivGoogle Scholar
  11. 11.
    J.S. Bell, On the Einstein Podolsky Rosen Paradox. Physics 1(3), 195–200 (1964)Google Scholar
  12. 12.
    John F. Clauser, Michael A. Horne, Abner Shimony, Richard A. Holt, Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)CrossRefADSGoogle Scholar
  13. 13.
    S. Popescu, D. Rohrlich, Quantum nonlocality as an axiom. Found. Phys. 24(3), 379–385 (1994)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    B.S. Tsirelson, Some results and problems on quantum bell-type inequalities. Hadronic J. Suppl. 8, 329–345 (1993)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Alain Aspect, Jean Dalibard, Gérard Roger, Experimental test of Bell’s inequalities using time—varying analyzers. Phys. Rev. Lett. 49(25), 1804–1807 (1982)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S.W. Nam, R. Ursin, A. Zeilinger, Bell violation using entangled photons without the fair-sampling assumption. Nature 497, 227–230 (2013)CrossRefADSGoogle Scholar
  17. 17.
    T. Scheidl, R. Ursin, J. Kofler, S. Ramelow, X.-S. Ma, T. Herbst, L. Ratschbacher, A. Fedrizzi, N.K. Langford, T. Jennewein, A. Zeilinger, Violation of local realism with freedom of choice. P. Natl. Acad. Sci. U.S.A. 107(46), 19708–19713 (2010)Google Scholar
  18. 18.
    R.F. Werner, Quantum states with einstein-podolsky-rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)CrossRefADSGoogle Scholar
  19. 19.
    D. Deutsch, Quantum theory, the Church-turing principle and the universal quantum computer. Proc. Roy. Soc. Lond. A 400, 97–117 (1985)zbMATHMathSciNetCrossRefADSGoogle Scholar
  20. 20.
    R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phy. Theor. Phy. 21, 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  21. 21.
    R.P. Feynman, Quantum mechanical computers. Found. Phys. 16(6), 507–531 (1986)Google Scholar
  22. 22.
    P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring. In SFCS ’94: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, vol. 0 (IEEE Computer Society, Washington, 1994), pp. 124–134Google Scholar
  23. 23.
    D.P. DiVincenzo, Quantum computation. Science 270(5234), 255–261 (1995)Google Scholar
  24. 24.
    A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, H. Weinfurter, Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)CrossRefADSGoogle Scholar
  25. 25.
    S. Lloyd, Almost any quantum logic gate is universal. Phys. Rev. Lett. 75, 346–349 (1995)CrossRefADSGoogle Scholar
  26. 26.
    P.O. Boykin, T. Mor, M. Pulver, V. Roychowdhury, F. Vatan, On universal and fault-tolerant quantum computing: a novel basis and a new constructive proof of universality for shor’s basis. In Foundations of Computer Science, 1999. 40th Annual Symposium on (1999), pp. 486–494Google Scholar
  27. 27.
    D.P. DiVincenzo, The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000)zbMATHCrossRefGoogle Scholar
  28. 28.
    R. Raussendorf, H.J. Briegel, A one-way quantum computer. Phys. Rev. Lett. 86 (2001)Google Scholar
  29. 29.
    R. Raussendorf, D. Browne, H. Briegel, Measurement-based quantum computation on cluster states. Phys. Rev. A 68(2) (2003)Google Scholar
  30. 30.
    P.W. Shor, Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52, 3457–3467 (1995)CrossRefADSGoogle Scholar
  31. 31.
    S.J. Devitt, K. Nemoto, Programming a topological quantum computer (2012). ArXiv e-printsGoogle Scholar
  32. 32.
    D. Gottesman, An introduction to quantum error correction and Fault-Tolerant quantum computation (2009). ArXiv e-printsGoogle Scholar
  33. 33.
    C. Bennett, G. Brassard, Quantum cryptography: Public key distribution and coin tossing. Proc. IEEE Int. (1984)Google Scholar
  34. 34.
    L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4, 686–689 (2010)CrossRefADSGoogle Scholar
  35. 35.
    S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, V. Scarani, Device-independent quantum key distribution secure against collective attacks. New J. Phys. 11(4), 045021 (2009)CrossRefADSGoogle Scholar
  36. 36.
    V. Giovannetti, S. Lloyd, L. Maccone, Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)CrossRefADSGoogle Scholar
  37. 37.
    V. Giovannetti, S. Lloyd, L. Maccone, Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)CrossRefADSGoogle Scholar
  38. 38.
    J.C.F. Matthews, X.-Q. Zhou, H. Cable, P.J. Shadbolt, D.J. Saunders, G.A. Durkin, G.J. Pryde, J.L. O’Brien, Practical quantum metrology (2013). ArXiv e-printsGoogle Scholar
  39. 39.
    H. Cable, G.A. Durkin, Parameter estimation with entangled photons produced by parametric down-conversion. Phys. Rev. Lett. 105, 013603 (2010)CrossRefADSGoogle Scholar
  40. 40.
    P.S. Venkataram, Electromagnetic field quantization and applications to the casimir effect. MIT. Edu. (2013)Google Scholar
  41. 41.
  42. 42.
  43. 43.
    R.J. Glauber, Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963)MathSciNetCrossRefADSGoogle Scholar
  44. 44.
    R.H. Brown, R.Q. Twiss, A test of a new type of stellar interferometer on Sirius. Nature 178, 1046–1048 (1956)Google Scholar
  45. 45.
    K.P. Zetie, S.F. Adams, R.M. Tocknell, How does a mach-zehnder interferometer work? Phys. Educ. 35(1), 46 (2000)CrossRefADSGoogle Scholar
  46. 46.
    P. Grangier, G. Roger, A. Aspect, Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences. EPL (Europhys. Lett.) 1(4), 173 (1986)CrossRefADSGoogle Scholar
  47. 47.
    S.M. Tan, D.F. Walls, M.J. Collett, Nonlocality of a single photon. Phys. Rev. Lett. 66, 252–255 (1991)CrossRefADSGoogle Scholar
  48. 48.
    C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987)CrossRefADSGoogle Scholar
  49. 49.
    J. Rarity, P. Tapster, R. Loudon, Non-classical interference between independent sources (1997). arXiv:quant-ph/9702032
  50. 50.
    S. Scheel, Permanents in linear optical networks (2004). arXiv:quant-ph/0406127
  51. 51.
    E.R. Caianiello, On quantum field theory, 1: explicit solution of dyson’s equation in electrodynamics without use of feynman graphs. Nuovo Cimento 10 (1953)Google Scholar
  52. 52.
    L.G. Valiant, The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    T. Tilma, E.C.G. Sudarshan, Generalized Euler angle parametrization for SU(N). J. Phys. Math. Gen. 35, 10467–10501 (2002)zbMATHMathSciNetCrossRefADSGoogle Scholar
  54. 54.
    E. Martín-López, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, J.L. O’Brien, Experimental realization of Shor’s quantum factoring algorithm using qubit recycling. Nat. Photonics 6, 773–776 (2012)CrossRefADSGoogle Scholar
  55. 55.
    J.L. O’Brien, G.J. Pryde, A.G. White, T.C. Ralph, D. Branning, Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003)Google Scholar
  56. 56.
    J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, R. Hadfield, G.D. Marshall, V. Zwiller, J. Rarity, J. OBrien, M. Thompson, On-chip quantum interference between two silicon waveguide sources (2013). arXiv:1304.1490
  57. 57.
    M. Reck, A. Zeilinger, H.J. Bernstein, P. Bertani, Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994)CrossRefADSGoogle Scholar
  58. 58.
    S. Aaronson, A. Arkhipov, The computational complexity of linear optics (2010). arXivGoogle Scholar
  59. 59.
    N. Russell, E.M. López, A. Laing, In preparationGoogle Scholar
  60. 60.
    M.R. Geller, J.M. Martinis, A.T. Sornborger, P.C. Stancil, E.J. Pritchett, A. Galiautdinov, Universal quantum simulation with pre-threshold superconducting qubits: Single-excitation subspace method (2012). arXiv:1210.5260
  61. 61.
    R. Blatt, D. Wineland, Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008)CrossRefADSGoogle Scholar
  62. 62.
    B.P. Lanyon, P. Jurcevic, M. Zwerger, C. Hempel, E.A. Martinez, W. Dür, H.J. Briegel, R. Blatt, C.F. Roos, Measurement-based quantum computation with trapped ions. Phys. Rev. Lett. 111, 210501 (2013)CrossRefADSGoogle Scholar
  63. 63.
    M.H. Devoret, R.J. Schoelkopf, Superconducting circuits for quantum information: An outlook. Science 339(6124), 1169–1174 (2013)MathSciNetCrossRefADSGoogle Scholar
  64. 64.
    L. Robledo, L. Childress, H. Bernien, B. Hensen, P.F.A. Alkemade, R. Hanson, High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011)CrossRefADSGoogle Scholar
  65. 65.
    B.E. Kane, A silicon-based nuclear spin quantum computer. Nature 393(6681), 133–137 (1998)CrossRefADSGoogle Scholar
  66. 66.
    T.F. Rønnow, Z. Wang, J. Job, S. Boixo, S.V. Isakov, D. Wecker, J.M. Martinis, D.A. Lidar, M. Troyer, Defining and detecting quantum speedup (2014). ArXiv e-printsGoogle Scholar
  67. 67.
    A.B. U’Ren, C. Silberhorn, K. Banaszek, I.A. Walmsley, Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks. Phys. Rev. Lett. 93(9), 093601 (2004)CrossRefADSGoogle Scholar
  68. 68.
    G.I. Taylor, Interference fringes with feeble light. Proc. Camb. Philos. Soc. 15, 114–115 (1909)Google Scholar
  69. 69.
    X.-C. Yao, T.-X. Wang, X. Ping, L. He, G.-S. Pan, X.-H. Bao, C.-Z. Peng, L. Chao-Yang, Y.-A. Chen, J.-W. Pan, Observation of eight-photon entanglement. Nat. Photonics 6(4), 225–228 (2012)CrossRefADSGoogle Scholar
  70. 70.
    A.R. Dixon, Z.L. Yuan, J.F. Dynes, A.W. Sharpe, A.J. Shields, Gigahertz decoy quantum key distribution with 1 mbit/s secure key rate. Opt. Express 16(23), 18790–18979 (2008)CrossRefADSGoogle Scholar
  71. 71.
    J.G. Rarity, P.R. Tapster, E. Jakeman, T. Larchuk, R.A. Campos, M.C. Teich, B.E.A. Saleh, Two-photon interference in a mach-zehnder interferometer. Phys. Rev. Lett. 65, 1348–1351 (1990)CrossRefADSGoogle Scholar
  72. 72.
    L. Chao-Yang, D.E. Browne, T. Yang, J.-W. Pan, Demonstration of a compiled version of shor’s quantum factoring algorithm using photonic qubits. Phys. Rev. Lett. 99, 250504 (2007)CrossRefGoogle Scholar
  73. 73.
    B.P. Lanyon, T.J. Weinhold, N.K. Langford, M. Barbieri, D.F.V. James, A. Gilchrist, A.G. White, Experimental demonstration of a compiled version of shor’s algorithm with quantum entanglement. Phys. Rev. Lett. 99, 250505+ (2007)Google Scholar
  74. 74.
    A. Politi, J.C.F. Matthews, J.L. O’Brien, Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221+ (2009)Google Scholar
  75. 75.
    S. Barz, R. Vasconcelos, C. Greganti, M. Zwerger, W. Dür, H.J. Briegel, P. Walther, Demonstrating an element of measurement-based quantum error correction (2013). ArXiv e-printsGoogle Scholar
  76. 76.
    X. Cai, J. Wang, M.J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J.L. O’Brien, M.G. Thompson, Y. Siyuan, Integrated compact optical vortex beam emitters. Science 338(6105), 363–366 (2012)CrossRefADSGoogle Scholar
  77. 77.
    P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowling, G.J. Milburn, Linear optical quantum computing (2005). arXiv, Review articleGoogle Scholar
  78. 78.
    S.J. Devitt, A.D. Greentree, R. Ionicioiu, J.L. O’Brien, W.J. Munro, L.C.L. Hollenberg, Photonic module: An on-demand resource for photonic entanglement. Phys. Rev. A 76(5), 052312 (2007)CrossRefADSGoogle Scholar
  79. 79.
    E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)CrossRefADSGoogle Scholar
  80. 80.
    P. Kok, S.L. Braunstein, Limitations on the creation of maximal entanglement. Phys. Rev. A 62(6), 064301 (2000)MathSciNetCrossRefADSGoogle Scholar
  81. 81.
    J.L. O’Brien, A. Furusawa, J. Vuckovic, Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009)Google Scholar
  82. 82.
    S. Gasparoni, J.W. Pan, P. Walther, T. Rudolph, A. Zeilinger, Realization of a photonic controlled-NOT gate sufficient for quantum computation. Phys. Rev. Lett. 93, 020504+ (2004)Google Scholar
  83. 83.
    M.A. Nielsen, Optical quantum computation using cluster states. arXiv (4) (2004)Google Scholar
  84. 84.
    D.E. Browne, T. Rudolph, Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95(1) (2005)Google Scholar
  85. 85.
    P. Walther, K.J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, A. Zeilinger, Experimental one-way quantum computing. arXiv (2005)Google Scholar
  86. 86.
    R. Prevedel, P. Walther, F. Tiefenbacher, P. Bohi, R. Kaltenbaek, T. Jennewein, A. Zeilinger, High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007)CrossRefADSGoogle Scholar
  87. 87.
    R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, A. Cabello, Experimental entanglement and nonlocality of a Two-Photon Six-Qubit cluster state. Phys. Rev. Lett. 103, 160401+ (2009)Google Scholar
  88. 88.
    T. Horikiri, H. Sasaki, H. Wang, T. Kobayashi, Security and gain improvement of a practical quantum key distribution using a gated single-photon source and probabilistic photon-number resolution. Phys. Rev. A 72, 012312 (2005)CrossRefADSGoogle Scholar
  89. 89.
    M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Invited review article: Single-photon sources and detectors. Rev. Sci. Instrum. 82(7) (2011)Google Scholar
  90. 90.
    M.J. Collins, C. Xiong, I.H. Rey, T.D. Vo, J. He, S. Shahnia, C. Reardon, T.F. Krauss, M.J. Steel, A.S. Clark, B.J. Eggleton, Integrated spatial multiplexing of heralded single-photon sources. Nat. Commun. 4 (2013)Google Scholar
  91. 91.
    E. Jeffrey, N.A. Peters, P.G. Kwiat, Towards a periodic deterministic source of arbitrary single-photon states. New J. Phys. 6(1), 100 (2004)Google Scholar
  92. 92.
    L. Mandel, E. Wolf, in Optical coherence and quantum Optics (Cambridge University Press, 1995)Google Scholar
  93. 93.
    P.G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Sergienko, Y. Shih, New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)Google Scholar
  94. 94.
    A. Politi, M.J. Cryan, J.G. Rarity, Y. Siyuan, J.L. O’Brien, Silica-on-Silicon waveguide quantum circuits. Science 320, 646–649 (2008)Google Scholar
  95. 95.
    A. Laing, A. Peruzzo, A. Politi, M.R. Verde, M. Halder, T.C. Ralph, M.G. Thompson, J.L. O’Brien, High-fidelity operation of quantum photonic circuits. Appl. Phys. Lett. 97, 211109+ (2010)Google Scholar
  96. 96.
    J.C.F. Matthews, A. Politi, A. Stefanov, J.L. O’Brien, Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photon. 3, 346–350 (2009)Google Scholar
  97. 97.
    A. Peruzzo, M. Lobino, J.C.F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M.G. Thompson, J.L. OBrien, Quantum walks of correlated photons. Science 329, 1500–1503 (2010)Google Scholar
  98. 98.
    A. Peruzzo, A. Laing, A. Politi, T. Rudolph, J.L. O’Brien, Multimode quantum interference of photons in multiport integrated devices. Nat. Commun. 2, 224+ (2011)Google Scholar
  99. 99.
    N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W.J. Munro, K. Shimizu, K. Yamada, Y. Tokura, H. Takesue, A monolithically integrated polarization entangled photon pair source on a silicon chip. Sci. Rep. 2 (2012)Google Scholar
  100. 100.
    W. Sohler, H. Hui, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min, Integrated optical devices in lithium niobate. Opt. Photon. News 19(1), 24–31 (2008)Google Scholar
  101. 101.
    B. Calkins, P.L. Mennea, A.E. Lita, B.J. Metcalf, W.S. Kolthammer, A. Lamas-Linares, J.B. Spring, P.C. Humphreys, R.P. Mirin, J.C. Gates, P.G.R. Smith, I.A. Walmsley, T. Gerrits, S.W. Nam, High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing. Opt. Express 21, 22657 (2013)CrossRefADSGoogle Scholar
  102. 102.
    N. Spagnolo, C. Vitelli, L. Sansoni, E. Maiorino, P. Mataloni, F. Sciarrino, D.J. Brod, E.F. Galvao, A. Crespi, R. Ramponi, R. Osellame, General rules for bosonic bunching in multimode interferometers. Phys. Rev. Lett. 111(13), 130503 (2013)CrossRefADSGoogle Scholar
  103. 103.
    A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, P. Mataloni, Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566 (2011)Google Scholar
  104. 104.
    M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, P. Walther, Experimental Boson sampling. Nat. Photonics 7(7), 540–544 (2013)Google Scholar
  105. 105.
    D.G. Marshall, A. Politi, J.C.F. Matthews, P. Dekker, M. Ams, M.J. Withford, J.L. O’Brien, Laser written waveguide photonic quantum circuits. Opt. Express 17, 12546–12554 (2009)Google Scholar
  106. 106.
    K. Poulios, R. Keil, D. Fry, J.D.A. Meinecke, J.C.F. Matthews, A. Politi, M. Lobino, M. Gräfe, M. Heinrich, S. Nolte, A. Szameit, J.L. O’Brien, Quantum walks of correlated photon pairs in two-dimensional waveguide arrays (2013). arXiv:1308.2554
  107. 107.
    M.C. Rechtsman, J.M. Zeuner, A. Tünnermann, S. Nolte, M. Segev, A. Szameit, Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photonics 7, 153–158 (2013)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations