Skip to main content

Discrete to Scale-Dependent Continua for Complex Materials: A Generalized Voigt Approach Using the Virtual Power Equivalence

  • Chapter
Materials with Internal Structure

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

The mechanical behaviour of complex materials, characterized at finer scales by the presence of heterogeneities of significant size and texture, strongly depends on their microstructural features. By lacking in material internal scale parameters, the classical continuum does not always seem appropriate for describing the macroscopic behaviour of such materials, taking into account the size, the orientation and the disposition of the heterogeneities. This often calls for the need of non-classical continuum descriptions, which can be obtained through multiscale approaches aimed at deducing properties and relations by bridging information at different levels of material descriptions.

Current researches in solid state physics as well as in mechanics of materials show that energy-equivalent continua obtained by defining direct links with lattice systems, as widely investigated by the corpuscular-continuous approaches of nineteenth century, are still among the most promising approaches in material science. The aim is here to point out the suitability of adopting discrete to scale-dependent continuous models, based on a generalization of the so-called Cauchy–Born (Voigt) rule used in crystal elasticity and in classical molecular theory of elasticity, in order to identify continua with additional degrees of freedom (micromorphic, multifield, etc.) which are essentially non-local models with internal length and dispersive properties. It is shown that, within the general framework of the principle of virtual powers, the correspondence map relating the finite number of degrees of freedom of discrete models to the continuum kinematical fields provides a guidance on the choice of the most appropriate continuum approximation for heterogeneous media. Some applications of the mentioned approach to ceramic matrix composites and masonry-like materials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altenbach H, Eremeyev VA (eds) (2013) Generalized continua from the theory to engineering application. CISM Courses and Lectures, vol 541. Springer, Berlin

    Google Scholar 

  2. Capecchi D, Ruta G, Trovalusci P (2010) From classical to Voigt’s molecular models in elasticity. Arch Hist Exact Sci 64:525–559

    Article  MATH  MathSciNet  Google Scholar 

  3. Capecchi D, Ruta G, Trovalusci P (2011) Voigt and Poincaré’s mechanistic–energetic approaches to linear elasticity and suggestions for multiscale modelling. Arch Appl Mech 81(11):1573–1584

    Article  MATH  Google Scholar 

  4. Capriz G (1985) Continua with latent microstructure. Arch Ration Mech Anal 90:43–56

    Article  MATH  MathSciNet  Google Scholar 

  5. Capriz G (1989) Continua with Microstructure. Springer, Berlin

    Book  MATH  Google Scholar 

  6. Capriz G, Podio-Guidugli P (2004) Whence the boundary conditions in modern continuum physics. In: Atti dei Convegni Lincei, vol 210, Accademia Nazionale dei Lincei, Roma, pp 19–42

    Google Scholar 

  7. Cauchy A-L (1828) Sur l’équilibre et le mouvement d’un système de points matériels sollicités par des forces d’attraction ou de répulsion mutuelle. Exercices de Mathématiques 3:188–213, 1822, 1827. In. Œuvres 2(8):227–252

    Google Scholar 

  8. Cowin S, Nunziato JW (1983) Linear elastic materials with voids. J Elast 13:15–147

    Google Scholar 

  9. Di Carlo A (1996) A non-standard format for continuum mechanics. In: Batra RC, Beatty MF (eds) Contemporary research in the mechanics and mathematics of materials. International Center for Numerical Methods in Engineering, Barcelona, pp 92–104

    Google Scholar 

  10. Eringen AC (1999) Microcontinuum Field Theories. Springer, New York

    Book  MATH  Google Scholar 

  11. Frémond M, Nedjar B (1996) Damage, gradient of damage and principle of virtual power. Int J Solids Struct 33(8):1083–1103

    Article  MATH  Google Scholar 

  12. Fried E, Gurtin ME (2006) Tractions, balances and boundary conditions for non simple materials with application to liquid flow at small-length scales. Arch Ration Mech Anal 182:513–554

    Article  MATH  MathSciNet  Google Scholar 

  13. Germain P (1973) The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM J App Math 25(3):556–575

    Article  MATH  MathSciNet  Google Scholar 

  14. Gurtin ME (2000) Configurational Forces as Basis Concept of Continuum Physics. Springer, Berlin

    Google Scholar 

  15. Gurtin ME, Podio-Guidugli P (1992) On the formulation of mechanical balance laws for structured continua. Z Angew Math Phys 43:181–190

    Article  MATH  MathSciNet  Google Scholar 

  16. Gurtin ME, Podio-Guidugli P (1996) Configurational forces and the basic laws for crack propagation. J Mech Phys Solids 44:905–927

    Article  MATH  MathSciNet  Google Scholar 

  17. Kachanov M (1993) On the effective moduli of solids with cavities and cracks. Int J Fract 9:R17–R21

    Google Scholar 

  18. Kunin I (1982) Elastic Media with Microstructure-I. One-dimensional Models. Springer, Berlin (Russian edition 1975)

    Google Scholar 

  19. Mattoni A, Colombo L, Cleri F (2004) Atomistic study of the interaction between a microcrack and a hard inclusion. Phys Rev B 70(9):094108

    Article  Google Scholar 

  20. Maugin GA (1979) Nonlocal theories or gradient–type theories: a matter of convenience? Arch Mech 31(1):15–26

    MATH  MathSciNet  Google Scholar 

  21. Maugin GA (2011) Configurational Forces. Thermomechanics, Physics, Mathematics, and Numerics. CRC Series: Modern Mechanics and Mathematics. Chapman and Hall, Boca Raton

    Google Scholar 

  22. Mindlin RD (1964) Micro–structure in linear elasticity. Arch Rat Mech Anal 16:51–78

    Article  MATH  MathSciNet  Google Scholar 

  23. Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1:417–438

    Article  Google Scholar 

  24. Mindlin RD, Eshel NN (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4:109–124

    Article  MATH  Google Scholar 

  25. Navier CLMH (1827) Mémoire sur le lois de l’équilibre et du mouvement des corps solides élastiques (1821). In: Mémoires de l’Academie des Sciences de l’Institut de France, II, vol 7, pp 375–393

    Google Scholar 

  26. Newton I (1730 (1717, 1704)) Opticks or a treatise of the reflections, refractions, inflections and colours of light. Queries, XXXI, 4th edn. W. Innis (Royal Society), London

    Google Scholar 

  27. Nunziato JW, Cowin S (1979) A nonlinear theory of elastic materials with voids. Arch Ration Mech Anal 72(2):175–201

    Article  MATH  MathSciNet  Google Scholar 

  28. Podio-Guidugli P, Vianello M (2010) Hypertractions and hyperstresses convey the same mechanical information. Contin Mech Thermodyn 22(3):163–176

    Article  MATH  MathSciNet  Google Scholar 

  29. Poincaré H (1892) Leçons sur la Théorie de l’Élasticité. Georges Carré, Paris

    Google Scholar 

  30. Poisson SD (1829) Mémoire sur l’équilibre et le mouvement des corps élastiques. In: Mémoires de l’Académie des Sciences de l’Institut de France, vol 8. Lu à l’Académien 1828, pp 357–405

    Google Scholar 

  31. Trovalusci P (2014) Molecular approaches for multifield continua: origins and current developments. In: Sadowsky T, Trovalusci P (eds) Multiscale Modeling of Complex Materials: Phenomenological, Theoretical and Computational Aspects. CISM Courses and Lectures, vol 556. Springer, Berlin, pp 211–278

    Google Scholar 

  32. Trovalusci P, Pau A (2014) Derivation of microstructured continua from lattice systems via principle of virtual works. The case of masonry-like materials as micropolar, second gradient and classical continua. Acta Mech 225(1):157–177

    Article  MATH  MathSciNet  Google Scholar 

  33. Trovalusci P, Capecchi D, Ruta G (2009) Genesis of the multiscale approach for materials with microstructure. Arch Appl Mech 79:981–997

    Article  MATH  Google Scholar 

  34. Trovalusci P, Varano V, Rega G (2010) A generalized continuum formulation for composite materials and wave propagation in a microcracked bar. J Appl Mech 77(6):061002-1/061002-11

    Google Scholar 

  35. Voigt W (1887) Theoretische Studien über die Elasticitätsverhältnisse der Kristalle. In: Abhandlungen der Gesellschaft der Wissenschaften zu Göttingen, XXXIV

    Google Scholar 

  36. Voigt W (1910) Lehrbuch der Kristallphysik. B.G. Teubner, Leipzig

    Google Scholar 

Download references

Acknowledgements

This research has been partially supported by the Italian “Ministero dell’Uni-versità e della Ricerca Scientifica” (Research fund: MIUR Prin 2010-11(/12)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Trovalusci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Trovalusci, P. (2016). Discrete to Scale-Dependent Continua for Complex Materials: A Generalized Voigt Approach Using the Virtual Power Equivalence. In: Trovalusci, P. (eds) Materials with Internal Structure. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-21494-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21494-8_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21493-1

  • Online ISBN: 978-3-319-21494-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics