Skip to main content

On the Effective Properties of Elastic Materials and Structures at the Micro- and Nano-Scale Considering Various Models of Surface Elasticity

  • Chapter
Materials with Internal Structure

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

We discuss influence of surface properties on effective (apparent) properties of materials and structures such as Young’s modulus of a porous rod or bending stiffness of a nanosized plate. We consider various models of surface elasticity by Gurtin–Murdoch, Steigman–Ogden, and its generalizations. Difference between models is discussed, and formulas for some effective properties are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altenbach H, Eremeyev VA (2011) On the shell theory on the nanoscale with surface stresses. Int J Eng Sci 49(12):1294–1301

    Article  MathSciNet  Google Scholar 

  2. Altenbach H, Eremeev V, Morozov NF (2010) On equations of the linear theory of shells with surface stresses taken into account. Mech Solids 45(3):331–342

    Article  Google Scholar 

  3. Altenbach H, Eremeyev VA, Lebedev LP (2010) On the existence of solution in the linear elasticity with surface stresses. Zeitschrift für Angewandte Mathematik und Mechanik 90(3):231–240

    Article  MATH  MathSciNet  Google Scholar 

  4. Altenbach H, Eremeyev VA, Lebedev LP (2011) On the spectrum and stiffness of an elastic body with surface stresses. Zeitschrift für Angewandte Mathematik und Mechanik 91(9):699–710

    Article  MATH  MathSciNet  Google Scholar 

  5. Altenbach H, Eremeyev VA, Morozov NF (2012) Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. Int J Eng Sci 59:83–89

    Article  MathSciNet  Google Scholar 

  6. Arroyo M, Belytschko T (2002) An atomistic-based finite deformation membrane for single layer crystalline films. J Mech Phys Solids 50(9):1941–1977

    Article  MATH  MathSciNet  Google Scholar 

  7. Bažant ZP (2000) Size effect. Int J Solids Struct 37(1):69–80

    MATH  Google Scholar 

  8. Bhushan B (ed) (2007) Handbook springer of nanotechnology. Springer, Berlin

    Google Scholar 

  9. Bhushan B, Jung YC, Koch K (2009) Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos Trans R Soc A 367(1894):1631–1672

    Article  Google Scholar 

  10. Craighead HG (2000) Nanoelectromechanical systems. Science 290(5496):1532–1535

    Article  Google Scholar 

  11. Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69(16):165410

    Article  Google Scholar 

  12. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79(1):5–18

    Article  Google Scholar 

  13. dell’Isola F, Seppecher P (1997) Edge contact forces and quasi-balanced power. Meccanica 32(1):33–52

    Google Scholar 

  14. dell’Isola F, Seppecher P, Madeo A (2012) How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la d’Alembert”. Zeitschrift für Angewandte Mathematik und Physik 63:1119–1141

    Google Scholar 

  15. de Poisson SD (1831) Nouvelle théorie de l’action capillaire. Bachelier Père et Fils, Paris

    Google Scholar 

  16. Duan HL, Wang J, Karihaloo BL (2008) Theory of elasticity at the nanoscale. In: Advances in applied mechanics, vol 42. Elsevier, Amsterdam, pp 1–68

    Google Scholar 

  17. Ekinci KL, Roukes ML (2005) Nanoelectromechanical systems. Rev Sci Instrum 76(6):061101

    Article  Google Scholar 

  18. Eremeyev VA (2015) On effective properties of materials at the nano- and microscales considering surface effects. Acta Mechanica. doi:10.1007/s00707-015-1427-y

    Google Scholar 

  19. Eremeyev V, Morozov N (2010) The effective stiffness of a nanoporous rod. Dokl Phys 55(6):279–282

    Article  Google Scholar 

  20. Eremeyev VA, Lebedev LP (2013) Existence of weak solutions in elasticity. Math Mech Solids 18(2):204–217

    Article  MathSciNet  Google Scholar 

  21. Ganesh VA, Raut HK, Nair AS, Ramakrishna S (2011) A review on self-cleaning coatings. J Mater Chem 21(41):16304–16322

    Article  Google Scholar 

  22. de Gennes PG (1981) Some effects of long range forces on interfacial phenomena. J Phys Lett 42(16):377–379

    Article  Google Scholar 

  23. de Gennes PG, Brochard-Wyart F, Quéré D (2004) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer, New York

    Book  Google Scholar 

  24. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge solid state science series. Cambridge University Press, Cambridge

    Google Scholar 

  25. Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323

    Article  MATH  MathSciNet  Google Scholar 

  26. Ibach H (1997) The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf Sci Rep 29(5):195–263

    Article  Google Scholar 

  27. Javili A, dell’Isola F, Steinmann P (2013) Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J Mech Phys Solids 61(12), 2381–2401

    Google Scholar 

  28. Javili A, McBride A, Steinmann P (2012) Thermomechanics of solids with lower-dimensional energetics: On the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl Mech Rev 65:010802-1–010802-31

    Google Scholar 

  29. Javili A, Steinmann P (2010) A finite element framework for continua with boundary energies. Part II: the three-dimensional case. Comput Methods Appl Mech Eng 199(9–12):755–765

    Article  MATH  MathSciNet  Google Scholar 

  30. Javili A, Steinmann P (2011) A finite element framework for continua with boundary energies. Part III: the thermomechanical case. Comput Methods Appl Mech Eng 200(21):1963–1977

    Article  MATH  MathSciNet  Google Scholar 

  31. Jing GY, Duan HL, Sun XM, Zhang ZS, Xu J, Wang YDLJX, Yu DP (2006) Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys Rev B 73(23):235409-6

    Article  Google Scholar 

  32. Kang X, Zi WW, Xu ZG, Zhang HL (2007) Controlling the micro/nanostructure of self-cleaning polymer coating. Appl Surf Sci 253(22):8830–8834

    Article  Google Scholar 

  33. Kim C, Ru C, Schiavone P (2013) A clarification of the role of crack-tip conditions in linear elasticity with surface effects. Math Mech Solids 18(1):59–66

    Article  MathSciNet  Google Scholar 

  34. Kushch VI, Sevostianov I, Chernobai VS (2014) Effective conductivity of composite with imperfect contact between elliptic fibers and matrix: Maxwell’s homogenization scheme. Int J Eng Sci 83:146–161

    Article  MathSciNet  Google Scholar 

  35. Kushch VI, Chernobai VS, Mishuris GS (2014) Longitudinal shear of a composite with elliptic nanofibers: local stresses and effective stiffness. Int J Eng Sci 84:79–94

    Article  Google Scholar 

  36. Laplace PS (1805) Sur l’action capillaire. supplément à la théorie de l’action capillaire. In: Traité de mécanique céleste, vol 4. Supplement 1, Livre X. Gauthier–Villars et fils, Paris, pp 771–777

    Google Scholar 

  37. Laplace PS (1806) À la théorie de l’action capillaire. supplément à la théorie de l’action capillaire. In: Traité de mécanique céleste, vol 4. Supplement 2, Livre X. Gauthier–Villars et fils, Paris, pp 909–945

    Google Scholar 

  38. Liu K, Jiang L (2012) Bio-inspired self-cleaning surfaces. Ann Rev Mater Res 42:231–263

    Article  Google Scholar 

  39. Longley WR, Name RGV (eds) (1928) The collected works of J. Willard Gibbs, Ph.D., LL.D. Thermodynamics, vol I. Longmans, New York

    Google Scholar 

  40. Ma X, Liu A, Xu H, Li G, Hu M, Wu G (2008) A large-scale-oriented ZnO rod array grown on a glass substrate via an in situ deposition method and its photoconductivity. Mater Res Bull 43(8):2272–2277

    Article  Google Scholar 

  41. Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3):139

    Article  Google Scholar 

  42. Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1(4):417–438

    Article  Google Scholar 

  43. Mishuris GS, Kuhn G (2001) Asymptotic behaviour of the elastic solution near the tip of a crack situated at a nonideal interface. Zeitschrift für Angewandte Mathematik und Mechanik 81(12):811–826

    Article  MATH  MathSciNet  Google Scholar 

  44. Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov M, Doğan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):041301

    Article  Google Scholar 

  45. Rowlinson JS, Widom B (2003) Molecular theory of capillarity. Dover, New York

    Google Scholar 

  46. Rubin M, Benveniste Y (2004) A Cosserat shell model for interphases in elastic media. J Mech Phys Solids 52(5):1023–1052

    Article  MATH  MathSciNet  Google Scholar 

  47. Schiavone P, Ru CQ (2009) Solvability of boundary value problems in a theory of plane-strain elasticity with boundary reinforcement. Int J Eng Sci 47(11):1331–1338

    Article  MATH  MathSciNet  Google Scholar 

  48. Sfyris D, Sfyris G, Galiotis C (2014) Curvature dependent surface energy for a free standing monolayer graphene: some closed form solutions of the non-linear theory. Int J Non Linear Mech 67:186–197

    Article  Google Scholar 

  49. Shenoy VB (2005) Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys Rev B 71(9):094104

    Article  Google Scholar 

  50. Spinelli P, Verschuuren M, Polman A (2012) Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat Commun 3:692

    Article  Google Scholar 

  51. Steigmann DJ, Ogden RW (1997) Plane deformations of elastic solids with intrinsic boundary elasticity. Proc Roy Soc A 453(1959):853–877

    Article  MathSciNet  Google Scholar 

  52. Steigmann DJ, Ogden RW (1999) Elastic surface-substrate interactions. Proc R Soc A 455(1982):437–474

    Article  MathSciNet  Google Scholar 

  53. Tan LK, Kumar MK, An WW, Gao H (2010) Transparent, well-aligned TiO2 nanotube arrays with controllable dimensions on glass substrates for photocatalytic applications. ACS Appl Mater Interfaces 2(2):498–503

    Article  Google Scholar 

  54. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771):242–246

    Article  Google Scholar 

  55. Wang J, Duan HL, Huang ZP, Karihaloo BL (2006) A scaling law for properties of nano-structured materials. Proc R Soc A 462(2069):1355–1363

    Article  Google Scholar 

  56. Wang X, Wang X, Zhou J, Song J, Liu J, Xu N, Wang ZL (2006) Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett 6(12):2768–2772

    Article  Google Scholar 

  57. Wang J, Huang Z, Duan H, Yu S, Feng X, Wang G, Zhang W, Wang T (2011) Surface stress effect in mechanics of nanostructured materials. Acta Mech Solida Sinica 24:52–82

    Article  Google Scholar 

  58. Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eremeyev, V.A. (2016). On the Effective Properties of Elastic Materials and Structures at the Micro- and Nano-Scale Considering Various Models of Surface Elasticity. In: Trovalusci, P. (eds) Materials with Internal Structure. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-21494-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21494-8_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21493-1

  • Online ISBN: 978-3-319-21494-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics