Skip to main content

A Numerical Assessment of Phase-Field Models for Fracture

  • Chapter
Materials with Internal Structure

Abstract

We first give a concise description of phase-field models for the brittle and the cohesive approach to fracture. For brittle fracture we will address issues like the impact of the internal length scale parameter and the degradation function that are prominent in the model, and whether the functional that describes the smeared crack approaches that of the discrete crack in the limiting case that the internal length scale parameter vanishes. By an example we will show that this Γ-convergence is not necessarily attained numerically. For cohesive fracture the crack opening must be explicitly available as input for the cohesive traction-relative displacement relation. The resulting three-field problem can be solved properly on structured meshes when using a balanced interpolation of the field variables: displacements, phase field, and crack opening. A patch test shows that this does not necessarily extend to unstructured meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ingraffea AR, Saouma V (1985) Numerical modelling of discrete crack propagation in reinforced and plain concrete. In: Fracture mechanics of concrete. Martinus Nijhoff Publishers, Dordrecht, pp 171–225

    Google Scholar 

  2. Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33:2899–2938

    Article  MATH  Google Scholar 

  3. de Borst R, Mühlhaus H-B, Pamin J, Sluys LJ (1993) Fundamental issues in finite element analyses of localization of deformation. Eng Comput 10:99–121

    Article  Google Scholar 

  4. Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree HPJ (1996) Gradient-enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39:3391–3403

    Article  MATH  Google Scholar 

  5. Bourdin B, Francfort GA, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826

    Article  MATH  MathSciNet  Google Scholar 

  6. Bourdin B, Francfort GA, Marigo J-J (2008) The variational approach to fracture. J Elast 91:5–148

    Article  MATH  MathSciNet  Google Scholar 

  7. Francfort GA, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46:1319–1342

    Article  MATH  MathSciNet  Google Scholar 

  8. Verhoosel CV, de Borst R (2013) A phase-field model for cohesive fracture. Int J Numer Methods Eng 96:43–62

    Article  Google Scholar 

  9. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83:1273–1311

    Article  MATH  MathSciNet  Google Scholar 

  10. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Meth Appl Mech Eng 199:2765–2778

    Article  MATH  MathSciNet  Google Scholar 

  11. Borden MJ (2012) Isogeometric analysis of phase-field models for dynamic Brittle and Ductile fracture. Ph.D. thesis, The University of Texas at Austin

    Google Scholar 

  12. Amor H, Marigo J-J, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209–1229

    Article  MATH  Google Scholar 

  13. Jiràsek M, Bažant ZP (2001) Inelastic analysis of structures. Wiley, Chichester

    Google Scholar 

  14. Vignollet J, May S, de Borst R, Verhoosel CV (2014) Phase-field models for brittle and cohesive fracture. Meccanica 49:2587–2601

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René de Borst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Borst, R., May, S., Vignollet, J. (2016). A Numerical Assessment of Phase-Field Models for Fracture. In: Trovalusci, P. (eds) Materials with Internal Structure. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-21494-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21494-8_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21493-1

  • Online ISBN: 978-3-319-21494-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics