Skip to main content

Multiparametric MRI of the Prostate as a Tool for Prostate Cancer Detection, Localization, and Risk Assessment

  • Chapter
  • 844 Accesses

Abstract

Advances in multiparametric magnetic resonance imaging (mpMRI) hold promise for the improved detection and characterization of prostate cancer. MpMRI combines diffusion-weighted imaging, dynamic contrast-enhanced sequences, or spectroscopy with conventional T2-weighted sequences. With a combination of anatomic and functional imaging sequences to identify suspicious regions in the prostate, pre-biopsy mpMRI has the potential to improve prostate cancer detection and risk stratification through MRI-targeted biopsy. In this chapter we review the role of mpMRI in prostate cancer detection, the outcomes of MRI-targeted biopsy, and the critical concepts currently under evaluation in validation of an MRI-based prostate cancer risk stratification strategy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bjurlin MA, Meng X, Le Nobin J, et al. Optimization of prostate biopsy: the role of magnetic resonance imaging targeted biopsy in detection, localization and risk assessment. J Urol. 2014;192(3):648–58.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Haffner J, Lemaitre L, Puech P, et al. Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU Int. 2011;108(8 Pt 2):E171–8.

    Article  PubMed  Google Scholar 

  3. Bjurlin MA, Carter HB, Schellhammer P, et al. Optimization of initial prostate biopsy in clinical practice: sampling, labeling and specimen processing. J Urol. 2013;189(6):2039–46.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Siddiqui MM, Rais-Bahrami S, Turkbey B, et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA. 2015;313(4):390–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Meng X, Rosenkrantz AB, Mendhiratta N et al. Relationship of pre-biopsy multiparametric MRI and biopsy indication with MRI-US fusion-targeted prostate biopsy outcomes. Paper presented at: American Urological Association Annual Meeting, New Orleans, LA, 17 May 2015.

    Google Scholar 

  6. Hricak H, Dooms GC, McNeal JE, et al. MR imaging of the prostate gland: normal anatomy. AJR Am J Roentgenol. 1987;148(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  7. Wang L, Mazaheri Y, Zhang J, Ishill NM, Kuroiwa K, Hricak H. Assessment of biologic aggressiveness of prostate cancer: correlation of MR signal intensity with Gleason grade after radical prostatectomy. Radiology. 2008;246(1):168–76.

    Article  PubMed  Google Scholar 

  8. Akin O, Sala E, Moskowitz CS, et al. Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology. 2006;239(3):784–92.

    Article  PubMed  Google Scholar 

  9. Kim CK, Park BK, Kim B. High-b-value diffusion-weighted imaging at 3 T to detect prostate cancer: comparisons between b values of 1,000 and 2,000 s/mm2. AJR Am J Roentgenol. 2010;194(1):W33–7.

    Article  PubMed  Google Scholar 

  10. Katahira K, Takahara T, Kwee TC, et al. Ultra-high-b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur Radiol. 2011;21(1):188–96.

    Article  PubMed  Google Scholar 

  11. Mazaheri Y, Vargas HA, Akin O, Goldman DA, Hricak H. Reducing the influence of b-value selection on diffusion-weighted imaging of the prostate: evaluation of a revised monoexponential model within a clinical setting. J Magn Reson Imaging. 2012;35(3):660–8.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Hambrock T, Hoeks C, Hulsbergen-van de Kaa C, et al. Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. Eur Urol. 2012;61(1):177–84.

    Article  PubMed  Google Scholar 

  13. Turkbey B, Shah VP, Pang Y, et al. Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology. 2011;258(2):488–95.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Parker GJ, Tofts PS. Pharmacokinetic analysis of neoplasms using contrast-enhanced dynamic magnetic resonance imaging. Top Magn Reson Imaging. 1999;10(2):130–42.

    Article  CAS  PubMed  Google Scholar 

  15. Turkbey B, Choyke PL. Multiparametric MRI and prostate cancer diagnosis and risk stratification. Curr Opin Urol. 2012;22(4):310–5.

    Article  PubMed  Google Scholar 

  16. Villers A, Puech P, Mouton D, Leroy X, Ballereau C, Lemaitre L. Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with radical prostatectomy findings. J Urol. 2006;176(6 Pt 1):2432–7.

    Article  PubMed  Google Scholar 

  17. Delongchamps NB, Rouanne M, Flam T, et al. Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int. 2011;107(9):1411–8.

    Article  PubMed  Google Scholar 

  18. Yoshizako T, Wada A, Hayashi T, et al. Usefulness of diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging in the diagnosis of prostate transition-zone cancer. Acta Radiol. 2008;49(10):1207–13.

    Article  CAS  PubMed  Google Scholar 

  19. Jung JA, Coakley FV, Vigneron DB, et al. Prostate depiction at endorectal MR spectroscopic imaging: investigation of a standardized evaluation system. Radiology. 2004;233(3):701–8.

    Article  PubMed  Google Scholar 

  20. Barentsz JO, Richenberg J, Clements R, et al. ESUR prostate MR guidelines 2012. Eur Radiol. 2012;22(4):746–57.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Rosenkrantz AB, Kim S, Lim RP, et al. Prostate cancer localization using multiparametric MR imaging: comparison of Prostate Imaging Reporting and Data System (PI-RADS) and Likert scales. Radiology. 2013;269(2):482–92.

    Article  PubMed  Google Scholar 

  22. Rosenkrantz AB, Lim RP, Haghighi M, Somberg MB, Babb JS, Taneja SS. Comparison of interreader reproducibility of the prostate imaging reporting and data system and likert scales for evaluation of multiparametric prostate MRI. AJR Am J Roentgenol. 2013;201(4):W612–8.

    Article  PubMed  Google Scholar 

  23. Radiology ACo. MR Prostate Imaging Reporting and Data System version 2.0. 2015. http://www.acr.org/Quality-Safety/Resources/PIRADS/

  24. Sonn GA, Natarajan S, Margolis DJA, et al. Targeted biopsy in the detection of prostate cancer using an office based magnetic resonance ultrasound fusion device. J Urol. 2013;189(1):86–91.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Yerram NK, Volkin D, Turkbey B, et al. Low suspicion lesions on multiparametric magnetic resonance imaging predict for the absence of high-risk prostate cancer. BJU Int. 2012;110(11 Pt B):E783–8.

    Article  PubMed  Google Scholar 

  26. Kumar R, Nayyar R, Kumar V, et al. Potential of magnetic resonance spectroscopic imaging in predicting absence of prostate cancer in men with serum prostate-specific antigen between 4 and 10 ng/ml: a follow-up study. Urology. 2008;72(4):859–63.

    Article  PubMed  Google Scholar 

  27. Squillaci E, Manenti G, Mancino S, et al. MR spectroscopy of prostate cancer. Initial clinical experience. J Exp Clin Cancer Res. 2005;24(4):523–30.

    CAS  PubMed  Google Scholar 

  28. Manenti G, Squillaci E, Carlani M, Mancino S, Di Roma M, Simonetti G. Magnetic resonance imaging of the prostate with spectroscopic imaging using a surface coil. Initial clinical experience. Radiol Med. 2006;111(1):22–32.

    Article  CAS  PubMed  Google Scholar 

  29. Wysock JS, Zattoni F, Meng X et al. Predictive value of negative 3T multiparametric prostate MRI on 12 core biopsy results. Submitted.

    Google Scholar 

  30. Pokorny MR, de Rooij M, Duncan E, et al. Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. Eur Urol. 2014;66(1):22–9.

    Article  PubMed  Google Scholar 

  31. Itatani R, Namimoto T, Atsuji S, et al. Negative predictive value of multiparametric MRI for prostate cancer detection: outcome of 5-year follow-up in men with negative findings on initial MRI studies. Eur J Radiol. 2014;83(10):1740–5.

    Article  CAS  PubMed  Google Scholar 

  32. Villeirs GM, De Meerleer GO, De Visschere PJ, Fonteyne VH, Verbaeys AC, Oosterlinck W. Combined magnetic resonance imaging and spectroscopy in the assessment of high grade prostate carcinoma in patients with elevated PSA: a single-institution experience of 356 patients. Eur J Radiol. 2011;77(2):340–5.

    Article  PubMed  Google Scholar 

  33. Hoeks CM, Barentsz JO, Hambrock T, et al. Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology. 2011;261(1):46–66.

    Article  PubMed  Google Scholar 

  34. Kim CK, Park BK, Kim B. Localization of prostate cancer using 3T MRI: comparison of T2-weighted and dynamic contrast-enhanced imaging. J Comput Assist Tomogr. 2006;30(1):7–11.

    Article  PubMed  Google Scholar 

  35. Nakashima J, Tanimoto A, Imai Y, et al. Endorectal MRI for prediction of tumor site, tumor size, and local extension of prostate cancer. Urology. 2004;64(1):101–5.

    Article  PubMed  Google Scholar 

  36. Rud E, Klotz D, Rennesund K, et al. Detection of the index tumour and tumour volume in prostate cancer using T2-weighted and diffusion-weighted magnetic resonance imaging (MRI) alone. BJU Int. 2014;114(6b):E32–42.

    Article  PubMed  Google Scholar 

  37. Turkbey B, Mani H, Aras O, et al. Correlation of magnetic resonance imaging tumor volume with histopathology. J Urol. 2012;188(4):1157–63.

    Article  PubMed  Google Scholar 

  38. Isebaert S, Van den Bergh L, Haustermans K, et al. Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology. J Magn Reson Imaging. 2013;37(6):1392–401.

    Article  PubMed  Google Scholar 

  39. Baco E, Ukimura O, Rud E, et al. Magnetic resonance imaging-transectal ultrasound image-fusion biopsies accurately characterize the index tumor: correlation with step-sectioned radical prostatectomy specimens in 135 patients. Eur Urol. 2015;67:787–94.

    Article  PubMed  Google Scholar 

  40. Le Nobin J, Orczyk C, Deng FM, et al. Prostate tumour volumes: evaluation of the agreement between magnetic resonance imaging and histology using novel co-registration software. BJU Int. 2014;114(6b):E105–12.

    Article  PubMed  Google Scholar 

  41. Cornud F, Khoury G, Bouazza N, et al. Tumor target volume for focal therapy of prostate cancer-does multiparametric magnetic resonance imaging allow for a reliable estimation? J Urol. 2014;191(5):1272–9.

    Article  CAS  PubMed  Google Scholar 

  42. Anwar M, Westphalen AC, Jung AJ, et al. Role of endorectal MR imaging and MR spectroscopic imaging in defining treatable intraprostatic tumor foci in prostate cancer: quantitative analysis of imaging contour compared to whole-mount histopathology. Radiother Oncol. 2014;110(2):303–8.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Le Nobin J, Rosenkrantz AB, Villers A et al. Image guided focal therapy of MRI-visible prostate cancer: defining a 3D treatment margin based on MRI-histology co-registration analysis. J Urol. 2015. doi: 10.1016/j.juro.2015.02.080.

    Google Scholar 

  44. Puech P, Rouviere O, Renard-Penna R, et al. Prostate cancer diagnosis: multiparametric MR-targeted biopsy with cognitive and transrectal US-MR fusion guidance versus systematic biopsy—prospective multicenter study. Radiology. 2013;268:461–9.

    Article  PubMed  Google Scholar 

  45. Delongchamps NB, Peyromaure M, Schull A, et al. Prebiopsy magnetic resonance imaging and prostate cancer detection: comparison of random and targeted biopsies. J Urol. 2013;189(2):493–9.

    Article  PubMed  Google Scholar 

  46. Watanabe Y, Terai A, Araki T, et al. Detection and localization of prostate cancer with the targeted biopsy strategy based on ADC map: a prospective large-scale cohort study. J Magn Reson Imaging. 2012;35(6):1414–21.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Mozer P, Rouprêt M, Le Cossec C, et al. First round of targeted biopsies using magnetic resonance imaging/ultrasonography fusion compared with conventional transrectal ultrasonography-guided biopsies for the diagnosis of localised prostate cancer. BJU Int. 2015;115(1):50–7.

    Article  CAS  PubMed  Google Scholar 

  48. Numao N, Yoshida S, Komai Y, et al. Usefulness of pre-biopsy multiparametric magnetic resonance imaging and clinical variables to reduce initial prostate biopsy in men with suspected clinically localized prostate cancer. J Urol. 2013;190(2):502–8.

    Article  PubMed  Google Scholar 

  49. Hoeks CM, Schouten MG, Bomers JG, et al. Three-Tesla magnetic resonance-guided prostate biopsy in men with increased prostate-specific antigen and repeated, negative, random, systematic, transrectal ultrasound biopsies: detection of clinically significant prostate cancers. Eur Urol. 2012;62(5):902–9.

    Article  PubMed  Google Scholar 

  50. Vourganti S, Rastinehad A, Yerram NK, et al. Multiparametric magnetic resonance imaging and ultrasound fusion biopsy detect prostate cancer in patients with prior negative transrectal ultrasound biopsies. J Urol. 2012;188(6):2152–7.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Labanaris AP, Engelhard K, Zugor V, Nutzel R, Kuhn R. Prostate cancer detection using an extended prostate biopsy schema in combination with additional targeted cores from suspicious images in conventional and functional endorectal magnetic resonance imaging of the prostate. Prostate Cancer Prostatic Dis. 2010;13(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  52. Mendhiratta N, Meng X, Rosenkrantz AB, et al. Pre-biopsy MRI and MRI-ultrasound fusion-targeted prostate biopsy in men with previous negative biopsies: improved cancer detection and risk stratification. Paper presented at American Urological Association Annual Meeting, New Orleans, LA, 17 May 2015.

    Google Scholar 

  53. Turkbey B, Mani H, Aras O, et al. Prostate cancer: can multiparametric MR imaging help identify patients who are candidates for active surveillance? Radiology. 2013;268(1):144–52.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Ouzzane A, Renard-Penna R, Marliere F, et al. MRI-targeted biopsy improves selection of patients considered for active surveillance for clinically low-risk prostate cancer based on systematic biopsies. J Urol. 2015. doi: 10.1016/j.juro.2015.02.2938.

    Google Scholar 

  55. Vargas HA, Akin O, Afaq A, et al. Magnetic resonance imaging for predicting prostate biopsy findings in patients considered for active surveillance of clinically low risk prostate cancer. J Urol. 2012;188(5):1732–8.

    Article  PubMed  Google Scholar 

  56. Logan JK, Rais-Bahrami S, Turkbey B, et al. Current status of magnetic resonance imaging (MRI) and ultrasonography fusion software platforms for guidance of prostate biopsies. BJU Int. 2014;114(5):641–52.

    Article  PubMed  Google Scholar 

  57. Kim TH, Jeong JY, Lee SW, et al. Diffusion-weighted magnetic resonance imaging for prediction of insignificant prostate cancer in potential candidates for active surveillance. Eur Radiol. 2015;25:1786–92.

    Article  PubMed  Google Scholar 

  58. Siddiqui MM, Truong H, Rais-Bahrami S, et al. Clinical implications of a multiparametric MRI based nomogram applied to prostate cancer active surveillance. J Urol. 2015;193:1943–9.

    Article  PubMed  Google Scholar 

  59. Wysock JS, Rosenkrantz AB, Huang WC, et al. A prospective, blinded comparison of magnetic resonance (MR) imaging-ultrasound fusion and visual estimation in the performance of MR-targeted prostate biopsy: the PROFUS Trial. Eur Urol. 2014;66(2):343–51.

    Article  PubMed  Google Scholar 

  60. Cool DW, Zhang X, Romagnoli C, Izawa JI, Romano WM, Fenster A. Evaluation of MRI-TRUS fusion versus cognitive registration accuracy for MRI-targeted, TRUS-guided prostate biopsy. AJR Am J Roentgenol. 2015;204(1):83–91.

    Article  PubMed  Google Scholar 

  61. Kuru TH, Roethke MC, Seidenader J, et al. Critical evaluation of MRI-targeted TRUS-guided transperineal fusion biopsy for detection of prostate cancer. J Urol. 2013;190(4):1380–6.

    Article  PubMed  Google Scholar 

  62. Overduin CG, Futterer JJ, Barentsz JO. MRI-guided biopsy for prostate cancer detection: a systematic review of current clinical results. Curr Urol Rep. 2013;14(3):209–13.

    Article  PubMed  Google Scholar 

  63. Moore CM, Kasivisvanathan V, Eggener S, et al. Standards of reporting for MRI-targeted biopsy studies (START) of the prostate: recommendations from an International Working Group. Eur Urol. 2013;64(4):544–52.

    Article  PubMed  Google Scholar 

  64. Fiard G, Hohn N, Descotes JL, Rambeaud JJ, Troccaz J, Long JA. Targeted MRI-guided prostate biopsies for the detection of prostate cancer: initial clinical experience with real-time 3-dimensional transrectal ultrasound guidance and magnetic resonance/transrectal ultrasound image fusion. Urology. 2013;81(6):1372–8.

    Article  PubMed  Google Scholar 

  65. Rastinehad AR, Turkbey B, Salami SS, et al. Improving detection of clinically significant prostate cancer: magnetic resonance imaging/transrectal ultrasound fusion guided prostate biopsy. J Urol. 2014;191(6):1749–54.

    Article  PubMed  Google Scholar 

  66. Sonn GA, Chang E, Natarajan S, et al. Value of targeted prostate biopsy using magnetic resonance-ultrasound fusion in men with prior negative biopsy and elevated prostate-specific antigen. Eur Urol. 2014;65(4):809–15.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

Neil Mendhiratta and Samir S. Taneja are supported by the Joseph and Diane Steinberg Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir S. Taneja M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bjurlin, M.A., Mendhiratta, N., Taneja, S.S. (2016). Multiparametric MRI of the Prostate as a Tool for Prostate Cancer Detection, Localization, and Risk Assessment. In: Stone, N., Crawford, E. (eds) The Prostate Cancer Dilemma. Springer, Cham. https://doi.org/10.1007/978-3-319-21485-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21485-6_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21484-9

  • Online ISBN: 978-3-319-21485-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics