Spatio-Temporal Modeling as a Tool of the Decision-Making System Supporting the Policy of Effective Usage of EU Funds in Poland

  • Robert Olszewski
  • Jedrzej GasiorowskiEmail author
  • Magdalena Hajkowska
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9157)


Spatial data mining, space-temporal modelling and visual exploratory data analysis are tools that are useful not only for the analysis of multi-characteristics spatial data, but can also be used for the development of Spatial Decision Support Systems. Such system enables the optimisation of decision-making based on a thorough Spatial Multicriteria Decision Analysis. The authors of the present study have developed a set of multicriteria analyses with use of spatial data mining (SDM) techniques for the analysis of the spatial distribution of the allocation and spending of EU funds in Poland. The ten-year period of Poland’s membership in the EU enables not only the analysis of spatial differentiation of EU subsidies in different regions of the country, but also the dynamics of changes in this differentiation in time.

The proposed analytical system based on information technologies combines the possibilities offered by GIS packages and advanced statistical software, thus enabling to conduct highly complex analyses. One of the methods to carry out such analysis is the application of so-called data mining and data enrichment to detect patterns, rules and structures “hidden” in the database.


Spatial data mining Space-temporal modelling Spatial data analysis Spatial concentration Visual exploratory analysis EU funds Time series Kriging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gotlib, D., Iwaniak, A., Olszewski, R.: GIS. Obszary zastosowań [GIS. Application fields]. Wydawnictwo Naukowe PWN, Warszawa (2007)Google Scholar
  2. 2.
    Olszewski, R.: Kartograficzne modelowanie rzeźby terenu metodami inteligencji obliczeniowej [Cartographic modelling of terrain relief using computational intelligence methods], Prace Naukowe - Geodezja, z. 46, Oficyna Wydawnicza Politechniki Warszawskiej (2009)Google Scholar
  3. 3.
    Fiedukowicz, A., Gąsiorowski, J., Kowalski, P., Olszewski, R., Pillich-Kolipińska, A.: The statistical geoportal and the cartographic “added value”– creation of the spatial knowledge infrastructure. Geodesy & Cartography 61(1), 47–70 (2012)Google Scholar
  4. 4.
    Miller, H.J., Han, J.: Geographic Data Mining and Knowledge Discovery. Taylor & Francis, London (2001)CrossRefGoogle Scholar
  5. 5.
    Cabena, P., Hadjinian, P., Dtadler, R., Verhees, J., Zanasi, A.: Discovering Data Mining: From Concept to Implementation. Prentice Hall, Upper Saddle River; Journal of Laws of 1995, No. 88, item 43, New York (1998)Google Scholar
  6. 6.
    Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cambridge (2001)Google Scholar
  7. 7.
    Gatnar, E.: Symboliczne metody klasyfikacji danych [Symbolic methods of data classification]. Wydawnictwo Naukowe PWN, Warsaw (1998)Google Scholar
  8. 8.
    Sokolowski, A.: Metody stosowane w data mining [Methods used in data mining]. In: Data mining – metody i przykłady [Data mining – methods and examples]. StatSoft, Cracow (2002)Google Scholar
  9. 9.
    Franzese, R.J., Hays, J.C.: Spatial econometric models of cross-sectional interdependence in political science panel and time-series-cross-section data. Political Analysis 15(2), 140–164 (2007)CrossRefGoogle Scholar
  10. 10.
    Getis, A., Mur, J., Zoller, H. (eds.): Spatial Econometrics and Spatial Statistics. Palgrave Macmillan, New York (2004)zbMATHGoogle Scholar
  11. 11.
    Kuijpers, B., Paredaens, J., Van den Bussche, J.: Lossless representation of topological spatial data. In: Egenhofer, M., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 1–13. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  12. 12.
    Bao, S., Anselin, L., Martin, D., Stralberg, D.: Seamless integration of spatial statistics and GIS: The S-PLUS for ArcView and the S+Grassland Links. Journal of Geographical Systems 2(3), 287–306 (2000)CrossRefGoogle Scholar
  13. 13.
    Greenacre, M.: Correspondence Analysis in Practice, 2nd edn. Chapman & Hall/CRC, London (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Everitt, B.S.: The Cambridge Dictionary of Statistics. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  15. 15.
    Shiklomanov, N.I., Nelson, F.E.: Active-Layer Mapping at Regional Scales: A 13-Year Spatial Time Series for the Kuparuk Region. North-Central Alaska. Permafrost Periglac. Process. 13, 219–230 (2002)CrossRefGoogle Scholar
  16. 16.
    Sadahiro, Y., Kobayashi, T.: Exploratory analysis of time series data: Detection of partial similarities, clustering, and visualization. Computers, Environment and Urban Systems 45, 24–33 (2014)CrossRefGoogle Scholar
  17. 17.
    Holmes, M.J., Otero, J., Panagiotidis, T.: Modelling the behavior of unemployment rates in the US over time and across space. Physica A: Statistical Mechanics and its Applications 392(22), 5711–5722 (2013)CrossRefGoogle Scholar
  18. 18.
    Bronars, S.G., Jensen, D.W.: The geographic distribution of unemployment rates in the U.S.: A spatial-time series analysis. Journal of Econometrics 36(3), 251–279 (1987)CrossRefGoogle Scholar
  19. 19.
    Kyriakidis, P.C., Miller, N.L., Kim, J.: A Spatial Time Series Framework for Modeling Daily Precipitation at Regional Scales. Journal of Hydrology 297(1–4), 236–255 (2004)CrossRefGoogle Scholar
  20. 20.
    Kyriakidis, P.C., Journel, A.G.: Stochastic modeling of atmospheric pollution: A spatial time-series framework. part I: Methodology. Atmospheric Environment 35(13), 2331–2337 (2001)CrossRefGoogle Scholar
  21. 21.
    Shumway, R.H.: Applied Statistical Time Series Analysis. Prentice Hall, Englewood Cliffs (1988)Google Scholar
  22. 22.
    Papritz, A., Stein, A.: Spatial prediction by linear kriging. In: Spatial Statistics for Remote Sensing. Remote Sensing and Digital Image Processing, vol. 1, pp. 83–113 (2002)Google Scholar
  23. 23.
    Keogh, E., Kasetty, S.: On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Mining and Knowledge Discovery 7(4), 349–371 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Castels, M.: The Rise of the Network Society. The Information Age: Economy, Society and Culture. Wiley-Blackwell (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Robert Olszewski
    • 1
  • Jedrzej Gasiorowski
    • 2
    Email author
  • Magdalena Hajkowska
    • 3
  1. 1.Faculty of Geodesy and Cartography, Department of CartographyWarsaw University of TechnologyWarsawPoland
  2. 2.Institute of Geodesy and CartographyWarsawPoland
  3. 3.Ministry of Infrastructure and DevelopmentWarsawPoland

Personalised recommendations