Advertisement

Application of SLEUTH Model to Predict Urbanization Along the Emilia-Romagna Coast (Italy): Considerations and Lessons Learned

  • Ivan SekovskiEmail author
  • Francesco Mancini
  • Francesco Stecchi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9157)

Abstract

Coastal zone of Emilia-Romagna region, Italy, has been significantly urbanized during the last decades, as a result of a tourism development. This was the main motivation to estimate future trajectories of urban growth in the area. Cellular automata (CA)-based SLEUTH model was applied for this purpose, by using quality geographical dataset combined with relevant information on environmental management policy. Three different scenarios of urban growth were employed: sprawled growth scenario, compact growth scenario and a scenario with business-as-usual pattern of development. The results showed the maximum increase in urbanization in the area would occur if urban areas continue to grow according to compact growth scenario, while minimum was observed in case of more sprawled-like type of growth. This research goes beyond the domain of the study site, providing future users of SLEUTH detailed discussion on considerations that need to be taken into account in its application.

Keywords

SLEUTH Urban growth Land use planning Cellular automata Scenarios 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    United Nations Populations Fund (UNFPA): State of the World Population; Unleashing the Potential of Urban Growth. UNFPA, New York (2007)Google Scholar
  2. 2.
    Wong, P.P., Losada, I.J., Gattuso, J.-P., Hinkel, J., Khattabi, A., McInnes, K.L., Saito, Y., Sallenger, A.: Coastal systems and low-lying areas. In: In: Field, C.B., et al (eds.) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 361–409. Cambridge University Press, Cambridge (2014)Google Scholar
  3. 3.
    European Environment Agency (EEA): Urban Sprawl in Europe: The ignored challenge. European Environment Agency report 10. Office for Official Publications of the European Communities. Luxembourg (2006)Google Scholar
  4. 4.
    UNEP/MAP: State of the Mediterranean Marine and Coastal Environment, UNEP/MAP – Barcelona Convention, Athens (2012)Google Scholar
  5. 5.
    Cencini, C.: Physical processes and human activities in the evolution of the Po Delta, Italy. J. Coastal Res. 14(3), 774–793 (1998)Google Scholar
  6. 6.
    Armaroli, C., Ciavola, P., Perini, L., Calabrese, L., Lorito, S., Valentini, A., Masina, M.: Critical storm thresholds for significant morphological changes and damage along the Emilia-Romagna coastline. Italy. Geomorphology. 143–144, 34–51 (2012)CrossRefGoogle Scholar
  7. 7.
    Sekovski, I., Armaroli, C., Calabrese, L., Mancini, F., Stecchi, F., Perini, L.: Coupling scenarios of urban growth and flood hazard along the Emilia-Romagna coast (Italy). Nat. Hazard. Earth Sys. Sci. Discuss. 3, 2149–2189 (2015). doi: 10.5194/nhessd-3-2149-2015 CrossRefGoogle Scholar
  8. 8.
    Armaroli, C., Perini, L., Calabrese, L., Ciavola, P., Salerno, G.: Evaluation of coastal vulnerability: comparison of two different methodologies adopted by the Emilia-Romagna Region (Italy). Geophysical Research Abstracts 16. EGU General Assembly EGU2014-11299 (2014)Google Scholar
  9. 9.
    Silva, E.A., Clarke, KC.: Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Comput. Environ. Urban Syst. 26, 525–552 (2002)Google Scholar
  10. 10.
    Project Gigalopolis website http://www.ncgia.ucsb.edu/projects/gig/
  11. 11.
    Clarke, K., Gaydos, L.: Loose-coupling a Cellular Automaton Model and GIS: Long Term Urban Growth Prediction for San Francisco and Washington/ Baltimore. Int. J. Geo. Inform. Sci. 12(7), 699–714 (1998)CrossRefGoogle Scholar
  12. 12.
    Jantz, C.A., Goetz, S.J., Shelley, M.K.: Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on urban land use in the Baltimore-Washington metropolitan area. Environ. Plan. B. 30, 251–271 (2003)Google Scholar
  13. 13.
    Caglioni, M., Pelizzoni, M., Rabino, G.A.: Urban Sprawl: A Case Study for Project Gigalopolis Using SLEUTH Model. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 436–445. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Rafiee, R., Mahiny, A.S., Khorasani, N., Darvishsefat, A.A., Danekar, A.: Simulating urban growth in Mashad City, Iran through the SLEUTH model (UGM). Cities 26(1), 19–26 (2009)CrossRefGoogle Scholar
  15. 15.
    Akın, A., Clarke, K.C., Berberoglu, S.: The impact of historical exclusion on the calibration of the SLEUTH urban growth model. Int. J. Appl. Earth Obs. Geoinf. 27, 156–168 (2014)CrossRefGoogle Scholar
  16. 16.
    Onsted, J., Clarke, K.C.: The inclusion of differentially assessed lands in urban growth model calibration: a comparison of two approaches using SLEUTH. Int. J. Geogr. Inf. Sci. 26(5), 881–898 (2012)CrossRefGoogle Scholar
  17. 17.
    Goldstein, N.C.: Brains vs. brawn – comparative strategies for the calibration of a cellula automata–based urban growth model. In: Atkinson, P., Foody, G., Darby, S., Wu, F. (eds.) Geo Dynamics. CRC Press, Boca Raton (2004)Google Scholar
  18. 18.
    Candau, J.T.: Temporal calibration sensitivity of the SLEUTH Urban Growth Model. M. A. thesis. Department of Geography, University of California, Santa Barbara (2002)Google Scholar
  19. 19.
    Syphard, A.D., Clarke, K.C., Franklin, J.: Using a cellular automaton model to forecast the effects of urban growth on habitat pattern in southern California. Ecol. Complex 2, 185–203 (2005)Google Scholar
  20. 20.
    Dietzel, C., Clarke, K.C.: Toward Optimal Calibration of the SLEUTH Land Use Change Model. Transactions in GIS 11(1), 29–45 (2007)CrossRefGoogle Scholar
  21. 21.
    Leao, S., Bishop, I., Evans, D.: Simulating Urban Growth in a Developing Nation’s Region Using a Cellular Automata-Based Model. J. Urban Plan. D-ASCE 130, 145–158 (2004)CrossRefGoogle Scholar
  22. 22.
    Oguz, H., Klein, A.G., Srinivasan, R.: Using the Sleuth Urban Growth Model to Simulate the Impacts of Future Policy Scenarios on Urban Land Use in the Houston-Galveston-Brazoria, CMSA. Research Journal of Social Sciences 2, 72–82 (2007)Google Scholar
  23. 23.
    Jantz, C.A., Goetz, S.J., Donato, D., Claggett, P.: Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model. Comput. Environ. Urban Syst. 34(1), 1–16 (2010)CrossRefGoogle Scholar
  24. 24.
    Yang, X., Lo, C.P.: Modelling urban growth and landscape changes in the Atlanta metropolitan area. Int. J. Geogr. Inf. Sci. 17(5), 463–488 (2003)CrossRefGoogle Scholar
  25. 25.
    Herold, M., Goldstein, N.C., Clarke, K.C.: The spatiotemporal form of urban growth: measurement, analysis and modelling. Remote Sens. Environ. 86, 286–302 (2003)CrossRefGoogle Scholar
  26. 26.
    Clarke, K.C.: Why simulate cities? GeoJournal 79, 129–136 (2014)CrossRefGoogle Scholar
  27. 27.
    Syphard, A.D., Clarke, K.C., Franklin, J., Regan, H.M., Mcginnis, M.: Forecasts of habitat loss and fragmentation due to urban growth are sensitive to source of input data. J. Environ. Manage. 92(7), 1882–1893 (2011)CrossRefGoogle Scholar
  28. 28.
    Dietzel, C., Clarke, K.C.: Spatial differences in multi-resolution urban automata modelling. Transactions in GIS 8(4), 479–492 (2004)CrossRefGoogle Scholar
  29. 29.
    Jantz, C.A., Goetz, S.J.: Analysis of scale dependencies in an urban land-use-change model. Int. J. Geogr. Inf. Sci. 19(2), 217–241 (2005)CrossRefGoogle Scholar
  30. 30.
    Xiang, W.N., Clarke, K.C.: The use of scenario in land-use planning. Environ. Plan. B: Planning and Design 30, 885–909 (2003)CrossRefGoogle Scholar
  31. 31.
    Solecki, W.D., Oliveri, C.: Downscaling climate change scenarios in an urban land use change model. J. Environ. Manage. 72, 105–115 (2004)CrossRefGoogle Scholar
  32. 32.
    Mahiny, A.S., Gholamalifard, M.: Linking SLEUTH Urban Growth Modeling to Multi Criteria Evaluation for a Dynamic Allocation of Sites to Landfill. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part I. LNCS, vol. 6782, pp. 32–43. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  33. 33.
    Martellozzo, F., Clarke, K.C.: Urban Sprawl and the Quantification of Spatial Dispersion. In: Borruso, G, Bertazzon, S. Favretto, A., Murgante B. Torre, C.M. (eds.) Geographic Information Analysis for Sustainable Development and Economic Planning, ch 9, pp. 129–142. New Technologies. IGI Global (2013)Google Scholar
  34. 34.
    Dietzel, C., Oguz, H., Hemphill, J.J., Clarke, K.C., Gazulis, N.: Diffusion and coalescence of the Houston Metropolitan Area: evidence supporting a new urban theory. Environ. Plan. B. 32(2), 231–246 (2005)CrossRefGoogle Scholar
  35. 35.
    Schwartz, P.: The Art of the Long View: Planning for the Future in the Uncertain World. Doubleday, New York (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ivan Sekovski
    • 1
    • 3
    Email author
  • Francesco Mancini
    • 2
  • Francesco Stecchi
    • 3
  1. 1.Department of Earth SciencesCASEM, University of CadizPuerto RealSpain
  2. 2.DIEFUniversity of Modena and Reggio EmiliaModenaItaly
  3. 3.Department of Biology, Geology and Environmental ScienceUniversity of BolognaRavennaItaly

Personalised recommendations