Discrete Simulation of Pedestrian Dynamics on a Triangulated Ring Structure

  • Minjie Chen
  • Günter Bärwolff
  • Hartmut SchwandtEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9157)


We propose a new modelling method for the simulation of pedestrian dynamics when the walking direction of the pedestrians cannot be represented by straight lines. The geometry of the simulation is approximated on a special triangular grid. We also study the pedestrians’ step execution for the general case of multi-position velocities and the possible interaction among them. We discuss the model on a ring-formed environment with periodic boundary.


Pedestrian dynamics Path-oriented coordinate system Triangular grid Periodic boundary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Appert-Rolland, C., Cividini, J., Hilhorst, H.-J.: Frozen shuffle update for an asymmetric exclusion process on a ring. Journal of Statistical Mechanics: Theory and Experiment 07, P07009 (2011)Google Scholar
  2. 2.
    Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295, 507–525 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, M.-J., Bärwolff, G., Schwandt, H.: Modeling pedestrian dynamics on triangular grids. In: Transportation Research Procedia (The Conference on Pedestrian and Evacuation Dynamics 2014), vol. 2, pp. 327–335 (2014)Google Scholar
  4. 4.
    Gloor, C., Stucki, P., Nagel, K.: Hybrid techniques for pedestrian simulations. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 581–590. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  5. 5.
    Helbing, D., Farkas, I., Vicsek, T.: Traffic and related self-driven many-particle systems. Reviews of Modern Physics 73, 1067–1141 (2001)CrossRefGoogle Scholar
  6. 6.
    Kirchner, A., Klüpfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. Journal of Statistical Mechanics: Theory and Experiment 10, P10011 (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Plaue, M., Chen, M.-J., Bärwolff, G., Schwandt, H.: Multi-view extraction of dynamic pedestrian density fields. Photogrammetrie, Fernerkundung, Geoinformation 5, 547–555 (2012)CrossRefGoogle Scholar
  8. 8.
    Schadschneider, A.: Cellular automaton approach to pedestrian dynamics - theory. In: Schreckenberg, M., Sharma, S.D. (eds.) Pedestrian and Evacuation Dynamics, pp. 75–85. Springer, Heidelberg (2002)Google Scholar
  9. 9.
    Schwandt, H., Huth, F., Bärwolff, G., Berres, S.: A multiphase convection-diffusion model for the simulation of interacting pedestrian flows. In: Murgante, B., et al. (eds.) ICCSA 2013, Part V. LNCS, vol. 7975, pp. 17–32. Springer, Heidelberg (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Minjie Chen
    • 1
  • Günter Bärwolff
    • 2
  • Hartmut Schwandt
    • 1
    Email author
  1. 1.MA 6-4, Institut für MathematikTechnische Universität BerlinBerlinGermany
  2. 2.MA 4-5, Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations