Spline Smoothing for Estimating Hedonic Housing Price Models

  • Vincenzo Del Giudice
  • Benedetto ManganelliEmail author
  • Pierfrancesco De Paola
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9157)


The exact prediction of housing selling prices is a relevant issue for real estate market, also to evaluate alternative forms of financial investment. In this paper a hedonic price function built through a semiparametric additive model is implemented. This model use penalized spline functions and aims to achieve a significant improvement in the prediction of the market price of the properties.


Penalized spline Semiparametric regression Additive models Property investment Real estate valuation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morano, P., Tajani, F.: Bare ownership evaluation. Hedonic price model vs. artificial neural network. International Journal of Business Intelligence and Data Mining 8(4), 340–362 (2014)CrossRefGoogle Scholar
  2. 2.
    Manganelli, B., Pontrandolfi, P., Azzato, A., Murgante, B.: Using geographically weighted regression for housing market segmentation. International Journal of Business Intelligence and Data Mining 9(2), 161–177 (2014)CrossRefGoogle Scholar
  3. 3.
    Friedman, J.H., Stuetzle, W.: Projection pursuit regression. Journal of the American Statistical Association 76, 817–823 (1981)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ruppert, D., Wand, M.P., Carroll, R.J.: Semiparametris regressions. Cambridge University Press (2003)Google Scholar
  5. 5.
    Hastie, T., Tibshirani, R.: Generalized Additive Models. Chapman & Hall, New York (1990)zbMATHGoogle Scholar
  6. 6.
    Whittaker, E.T.: On a new method of graduation. Proceedings of the Edinburgh Mathematical Society 41, 63–75 (1923)Google Scholar
  7. 7.
    Engle, R.F., Granger, C.W.J., Rice, J., Weiss, A.: Semiparametric estimates of the relation between weather and electricity sales. Journal of the American Statistical Association 81, 310–320 (1986)CrossRefGoogle Scholar
  8. 8.
    Koenker, R., Ng, P.T., Portnoy, S.: Quantile smoothing splines. Biometrika 81(4), 673–680 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Craig, S.G., Ng, P.T.: Using quantile smoothing splines to identify employment subcenters in a multicentric urban area. Journal of Urban Economics 49(1), 100–120 (2001)CrossRefGoogle Scholar
  10. 10.
    Anderson, J.E.: Cubic-spline urban density functions. Journal of Urban Economics 12(2), 155–167 (1982)CrossRefGoogle Scholar
  11. 11.
    Anderson, J.E.: The changing structure of a city: temporal changes in cubic spline urban density patterns. Journal of Regional Science 25(3), 413–426 (1985)CrossRefGoogle Scholar
  12. 12.
    Sunderman, M.A., Birch, J.W., Cannaday, R.E., Hamilton, T.W.: Testing for vertical inequity in property tax systems. Journal of Real Estate Research 5(3), 319–334 (1990)Google Scholar
  13. 13.
    Speyrer, J.F., Ragas, W.R.: Housing prices and flood risk: an examination using spline regression. Journal of Real Estate Finance and Economics 4(4), 395–407 (1991)CrossRefGoogle Scholar
  14. 14.
    Zheng, X.P.: Metropolitan spatial structure and its determinants: a case study of Tokyo. Urban Studies 28(1), 87–104 (1991)CrossRefGoogle Scholar
  15. 15.
    Coulson, N.E.: Semiparametric estimates of marginal price of floorspace. Journal of Real Estate Finance and Economics 5(1), 73–83 (1992)CrossRefGoogle Scholar
  16. 16.
    Bao, H., Wan, A.: On the use of spline smoothing in estimating hedonic housing price models: empirical evidence using Hong Kong data. Real Estate Economics 32(3), 487–507 (2004)CrossRefGoogle Scholar
  17. 17.
    Parise, H., Wand, M.P., Ruppert, D., Ryan, L.: Incorporation of historical controls using semiparametric mixed models. Applied Statistics 50(1), 31–42 (2001)zbMATHGoogle Scholar
  18. 18.
    Coull, B.A., Ruppert, D., Wand, M.P.: Simple incorporation of interactions into additive models. Biometrics 57(2), 539–545 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Coull, B.A., Schwartz, J., Wand, M.P.: Respiratory health and air pollution: additive mixed model analyses. Biostatistics 2, 337–349 (2001)CrossRefzbMATHGoogle Scholar
  20. 20.
    Zheng, H., Little, R.J.A.: Penalized spline nonparametric mixed models for inference about a finite population mean from two-stage samples. Survey Methodology 30, 209–218 (2004)Google Scholar
  21. 21.
    Opsomer, J.D., Claeskens, G., Ranalli, M.G., Kauermann, G., Breidt, F.J.: Nonparametric small area estimation using penalized spline regression. Journal of the Royal Statistical Society, Series B 70(1), 265–286 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Montanari, G.E., Ranalli, M.G.: A mixed model-assisted regression estimator that uses variables employed at the design stage. Statistical methods and applications 15(2), 139–149 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Bin, O.: A prediction comparison of housing sales prices by parametric versus semi-parametric regressions. Journal of Housing Economics 13(1), 68–84 (2004)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Clapp, J.: A semiparametric method for estimating local house price indices. Real Estate Economics 32(1), 127–160 (2004)CrossRefGoogle Scholar
  25. 25.
    Gencay, R., Yang, X.: A forecast comparison of residential housing prices by parametric versus semi-parametric conditional mean estimators. Economics Letters 52(2), 129–135 (1996)CrossRefzbMATHGoogle Scholar
  26. 26.
    Pace, K.: Appraisal using generalized additive models. Journal of Real Estate Research 15(1), 77–99 (1998)Google Scholar
  27. 27.
    Del Giudice, V., De Paola, P.: Geoadditive Models for Property Market. Applied Mechanics and Materials 584–586, 2505–2509 (2014)CrossRefGoogle Scholar
  28. 28.
    Del Giudice, V., De Paola, P.: Undivided real estate shares: appraisal and interactions with capital markets. Applied Mechanics and Materials 584–586, 2522–2527 (2014)CrossRefGoogle Scholar
  29. 29.
    Wand, M.P.: Smoothing and mixed models. Computational Statistics 18, 223–249 (2003)zbMATHGoogle Scholar
  30. 30.
    Morano, P., Tajani, F.: Least median of squares regression and minimum volume ellipsoid estimator for outliers detection in housing appraisal. International Journal of Business Intelligence and Data Mining 9(2), 91–111 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Vincenzo Del Giudice
    • 1
  • Benedetto Manganelli
    • 2
    Email author
  • Pierfrancesco De Paola
    • 1
  1. 1.University of NaplesNaplesItaly
  2. 2.University of BasilicataPotenzaItaly

Personalised recommendations