Skip to main content

Experimental and Numerical Fracture Mechanics—An Individually Dyed History

  • Conference paper
  • First Online:
Recent Trends in Fracture and Damage Mechanics

Abstract

Almost half a century ago, fracture mechanics started in Germany with the foundation of the DVM Working Group Fracture Mechanics in 1969. The present authors have been partly involved in the further development of fracture and damage mechanics, one with particular interest in elastic-plastic fracture and modelling, the other in thin-walled structures, fatigue and assessment. They take the colloquium in honour of the 65th birthday of Professor Meinhard Kuna as occasion to highlight some significant achievements on the background of personal experience. In particular, they intend to show that both fracture and damage mechanics started with paradigm changes which were partly looked at with distrust in the beginning but turned out to be seminal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Translation from the preface of the German edition [57] by the present authors who made an effort to meet Neuber’s particular terminology as authentically as possible.

  2. 2.

    Where it has later been replaced by the J-integral, see below, or by K J -values calculated from J according to LEFM.

  3. 3.

    EPRI is the acronym for Electric Power Research Institute which is financed by American power generating companies.

References

  1. ASTM E 399, Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials. Annual book of ASTM Standards, vol 03.01. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  2. ASTM E 1820-06, Standard test method for measurement of fracture toughness. Annual book of ASTM Standards, vol 03.01. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  3. ASTM E 2472, Standard test method for determination of resistance to stable crack extension under low-constraint conditions, ASTM Book of Standards, vol 03.01

    Google Scholar 

  4. Barenblatt GI (1959) The formation of equilibrium cracks during brittle fracture: general ideas and hypothesis, axially symmetric cracks. Appl Math Mech 23:623–636

    MATH  Google Scholar 

  5. Bernauer G, Brocks W (2002) Micro-mechanical modelling of ductile damage and tearing—Results of a European numerical round robin. Fatigue Fract. Engng. Mater Struct 25:363–384

    Article  Google Scholar 

  6. Betegón C, Hancock JW (1991) Two-parameter characterization of elastic-plastic crack tip fields. J Appl Mech 58:104–110

    Article  Google Scholar 

  7. Brocks W (2005) Cohesive strength and separation energy as characteristic parameters of fracture toughness and their relation to micromechanics. Struct Integr Durab 1:233–241

    Google Scholar 

  8. Brocks W, Anuschewski P, Scheider I (2010) Ductile tearing resistance of metal sheets. Eng Fail Anal 17:607–616

    Article  Google Scholar 

  9. Brocks W, Cornec A, Scheider I (2003) Computational aspects of nonlinear fracture mechanics. In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity—Numerical and computational methods, vol 3. Elsevier, Oxford, 127–209. ISBN: 0-08-043749-4

    Google Scholar 

  10. Brocks W, Klingbeil D, Künecke G, Sun DZ (1995) Application of the Gurson model to ductile tearing resistance. In: Kirk M, Bakker A (eds) Constraint effects in fracture—Theory and applications: ASTM STP 1244, vol Second. American Society for Testing and Materials, Philadelphia, pp 232–252

    Chapter  Google Scholar 

  11. Brocks W, Künecke G, Noack HD, Veith H (1989) On the transferability of fracture mechanics parameters to structures using FEM. Nucl Eng Design 112:1–14

    Article  Google Scholar 

  12. Brocks W, Olschewski J (1986) On J-dominance of crack-tip fields in largely yielded 3D structures. Int J Solids Struct 22:693–708

    Article  Google Scholar 

  13. Brocks W, Schmitt W (1993) Quantitative assessment of the role of crack tip constraint on ductile tearing. In: Hackett EM, Schwalbe KH, Dodds RH (eds) Constraint effects in fracture, ASTM STP 1171. American Society for Testing and Materials, pp 64–78

    Google Scholar 

  14. Brocks W, Sun DZ, Hönig A (1995) Verification of the transferability of micromechanical parameters by cell model calculations for visco-plastic materials. Int J Plast 11:971–989

    Article  Google Scholar 

  15. Brocks W, Yuan H (1989) Numerical investigations on the significance of J for large stable crack growth. Eng Fract Mech 32:459–468

    Article  Google Scholar 

  16. BS 5762 (1979) Methods for crack opening displacement (COD) testing. British Standards Institution

    Google Scholar 

  17. Cherepanov CP (1967) Crack propagation in continuous media. Appl Math Mech 31:476–488

    Google Scholar 

  18. Clarke GA, Brown GM (1980) Computerized methods for J Ic determination using unloading compliance techniques. ASTM STP 710:110–126

    Google Scholar 

  19. Dalle Donne C, Döker H (1994) Biaxial load effects on plane stress J-Δa and δ5-Δa curves. In: Schwalbe KH, Berger C (eds) Proceedings of 10th Biennial European conference on fracture, EMAS, Cradley Heath

    Google Scholar 

  20. Du ZZ, Hancock JW (1991) The effect of non-singular stresses on crack-tip constraint. J Mech Phys Solids 39:555–567

    Article  MATH  Google Scholar 

  21. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  Google Scholar 

  22. Elber W (1970) Fatigue crack closure under cyclic tension. Eng Fract Mech 2:37–44

    Article  Google Scholar 

  23. ESIS P2-92 (1992) ESIS Procedure for determining the fracture behaviour of materials. European Structural Integrity Society

    Google Scholar 

  24. Faleskog J, Gao X, Shih CF (1998) Cell model for nonlinear fracture analysis—I. Micromechanics calibration. Int J Fract 89:355–373

    Article  Google Scholar 

  25. Gao X, Faleskog J, Shih CF (1998) Cell model for nonlinear fracture analysis—II. Fracture-process calibration and verification. Int J Fract 89:375–398

    Article  Google Scholar 

  26. Garwood SJ (1979) Effect of specimen geometry on crack growth resistance. In: Smith CW (ed) ASTM STP 677, American Society for Testing and Materials, pp 511–532

    Google Scholar 

  27. Goodier JN, Field FA (1963) Plastic energy dissipation in crack propagation. In: Drucker DC, Gilman JJ (eds) Fracture of solids. Wiley, New York, pp 103–118

    Google Scholar 

  28. Griffith AA (1920) The phenomena of rupture and flow in solids. Phil Trans Roy Soc Lond A211:163–198

    MATH  Google Scholar 

  29. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth—Part I: Yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2–15

    Article  Google Scholar 

  30. Harrison JD, Dawes MG, Archer GL, Kamath KD (1978) The COD approach and its application to welded structures. Research Report 55/1978/E, The Welding Institute, Cambridge

    Google Scholar 

  31. Heerens J, Cornec A, Schwalbe KH (1988) Results of a round robin on stretch zone width determination. Fatigue Fract Eng Mater Struct 11:19–29

    Article  Google Scholar 

  32. Heerens J, Schödel M (2009) Characterization of stable crack extension in aluminium sheet material using the crack tip opening angle determined optically and by the δ5 clip gauge technique. Eng Fract Mech 76:101–113

    Article  MATH  Google Scholar 

  33. Hellmann D, Schwalbe KH (1986) On the experimental determination of CTOD based R-curves. In: Schwalbe KH (ed) The crack tip opening displacement in elastic-plastic fracture mechanics, Springer, Berlin, pp 115–132

    Google Scholar 

  34. Hellmann D, Schwalbe KH (1992) Methods for material characterisation in the range of high crack growth rates, In: Rie KT (ed) Proceedings of third international conference on LCF and elasto-plastic behaviour of materials. Elsevier Applied Sciences Publishers, pp 521–526

    Google Scholar 

  35. Hübner P (1996) Schwingfestigkeit der hochfesten schweißbaren Baustähle StE 885 und StE 960. PhD Dissertation, Technische Universität Bergakademie Freiberg

    Google Scholar 

  36. Hutchinson JW (1968) Singular behaviour at the end of a tensile crack in a hardening material. J Mech Phys Solids 16:13–31

    Article  Google Scholar 

  37. Inglis CE (1913) Stresses in a plate due to the presence of cracks und sharp corners. Trans Inst Naval Arch 60:219–230

    Google Scholar 

  38. International Standard, ISO 12135 (2002) Metallic materials—Unified method of test for the determination of quasistatic fracture toughness. International Standards Organisation, Geneva

    Google Scholar 

  39. International Standard, ISO 22889 (2007) Metallic materials—method of test for the determination of resistance to stable crack extension using specimens of low constraint. International Standards Organisation, Geneva

    Google Scholar 

  40. Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364

    Google Scholar 

  41. Irwin GR (1964) Structural aspects of brittle fracture. Appl Mater Res 3:65–81

    Google Scholar 

  42. Johnson HH (1965) Calibrating the electrical potential method for studying slow stable crack growth. Mater Res Stand 5:442–445

    Google Scholar 

  43. Kachanov LM (1958) On the creep rupture time (in Russian). Izv AN SSSR Otd Tehn Nauk 8:26–31

    Google Scholar 

  44. Kachanov LM (1986) Introduction to continuum damage mechanics. Kluwer Academic Publishers, Berlin

    Book  Google Scholar 

  45. Koplik J, Needleman A (1988) Void growth and coalescence in porous plastic solids. Int J Solids Struct 24:835–853

    Article  Google Scholar 

  46. Kuhn TS (2012) The structure of scientific revolutions, 4th edn. University of Chicago Press, Chicago ISBN 9780226458113

    Book  Google Scholar 

  47. Kumar V, German MD, Shih CF (1981) An engineering approach for elastic-plastic fracture analysis. EPRI-Report NP-1931. EPRI, Palo Alto

    Google Scholar 

  48. Kussmaul, K (ed) (1991) Fracture mechanics verification by large-scale testing, EGF/ESIS Publication 8. Mechanical Engineering Publications Limited, London

    Google Scholar 

  49. Larsson SG, Carlsson AJ (1973) Influence of non-singular stress terms and specimen geometry on small scale yielding at crack-tips in elastic plastic materials. J Mech Phys Solids 21:263–278

    Article  Google Scholar 

  50. Leevers PS, Radon JC (1982) Inherent stress biaxiality in various fracture specimens geometries. Int J Fract 19:311–325

    Article  Google Scholar 

  51. Lemaitre J, Chaboche JL (1985) Mércanique des Matériaux Solids. Dunod, Paris

    Google Scholar 

  52. Luke M (2013) Das Fraunhofer-Institut für Werkstoffmechanik IWM. In: DVM-Nachrichten 57. Deutscher Verband für Materialforschung und –prüfung, Berlin

    Google Scholar 

  53. Clintock Mc (1968) A criterion of ductile failure by the growth of holes. J Appl Mech 35:63–371

    Google Scholar 

  54. McMeeking RM (1977) Finite deformation analyses of crack-tip opening in elastic-plastic materials and implications for fracture. J Mech Phys Solids 25:357–381

    Article  MATH  Google Scholar 

  55. McMeeking RM, Parks DM (1979) On criteria for J-dominance of crack-tip fields in large scale yielding. In: ASTM STP 668. American Society for Testing and Materials, pp 175–194

    Google Scholar 

  56. Needleman A, Tvergaard V (1984) An analysis of ductile rupture in notched bars. J Mech Phys Solids 32:461–490

    Article  Google Scholar 

  57. Needleman A, Tvergaard V (1987) An analysis of ductile rupture at a crack tip. J Mech Phys Solids 35:151–183

    Article  MATH  Google Scholar 

  58. Neuber H (1985) Kerbspannungslehre, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  59. Newman JC (1997) Prediction of crack growth under variable-amplitude loading in various materials. Technical Report. NASA Langley, USA

    Google Scholar 

  60. O’Dowd NP, Shih CF (1991) Family of crack-tip fields characterized by a triaxiality parameter: I Structure of fields. J Mech Phys Solids 39:989–1015

    Article  MATH  Google Scholar 

  61. O’Dowd NP, Shih CF (1992) Family of crack-tip fields characterized by a triaxiality parameter: II Fracture applications. J Mech Phys Solids 40:939–963

    Article  Google Scholar 

  62. Paris PC, Erdogan F (1963) A critical analysis of crack propagation laws. J Basic Eng Trans Am Soc Mech Eng D85:528–534

    Article  Google Scholar 

  63. Rice JR (1968) A path independent integral and the approximate analysis of strain concentrations by notches and cracks. J Appl Mech 35:379–386

    Article  MATH  Google Scholar 

  64. Rice JR (1974) Limitations to the small scale yielding approximation for crack tip plasticity. J Mech Phys Solids 22:17–26

    Google Scholar 

  65. Rice JR, Drugan WJ, Sham TL (1980) Elastic-plastic analysis of growing cracks. In: Fracture mechanics 12th conference ASTM STP 700. American Society for Testing and Materials, Philadelphia, pp 189–221

    Google Scholar 

  66. Rice JR, Paris PC, Merkle JG (1973) Some further results of J-integral analysis and estimates. In: Progress in flaw growth and fracture toughness testing, ASTM STP 536. American Society for Testing and Materials, pp 231–245

    Google Scholar 

  67. Rice JR, Rosengren GF (1968) Plane strain deformation near a crack-tip in a power-law hardening material. J Mech Phys Solids 16:1–12

    Article  Google Scholar 

  68. Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201–217

    Article  Google Scholar 

  69. Rousselier G (1987) Ductile fracture models and their potential in local approach of fracture. Nucl Eng Des 105:97–111

    Article  Google Scholar 

  70. Scheider I, Brocks W (2003) Simulation of cup-cone fracture using the cohesive model. Eng Fract Mech 70:1943–1961

    Article  Google Scholar 

  71. Schödel M (2006) Bruchmechanische Untersuchungen der Rissöffnung bei stabilem Risswachstum in dünnem Blech aus Al 5083. PhD thesis, Technische Universität Hamburg, Harburg

    Google Scholar 

  72. Schwalbe KH (1978) Mechanik und Mechanismen des stabilen Risswachstums. Habilitation thesis, Ruhr-Universität Bochum

    Google Scholar 

  73. Schwalbe KH (1980) Bruchmechanik metallischer Werkstoffe. Hanser, Germany

    Google Scholar 

  74. Schwalbe KH (1996) The engineering flaw assessment method (EFAM). Document EFAM 96. GKSS Research Centre, Geesthacht

    Google Scholar 

  75. Schwalbe KH (1997) Introduction of δ5 as an Operational Definition of the CTOD and its practical application. In: Reuter WG, Underwood JH, Newman JC (eds) Fracture mechanics: ASTM STP 1256, vol 26. ASTM International, West Conshohocken, pp 763–778

    Google Scholar 

  76. Schwalbe KH (1998) The engineering flaw assessment method (EFAM). Fatigue Fract Eng Mater Struct 21:1203–1213

    Article  Google Scholar 

  77. Schwalbe KH (1998) EFAM ETM 97—the ETM method for assessing the significance of crack-like defects in engineering structures, comprising the versions ETM 97/1 and ETM 97/2. GKSS Research Centre, Geesthacht

    MATH  Google Scholar 

  78. Schwalbe K-H, Heerens J, Zerbst U, Pisarski H, Kocak M (2002) EFAM GTP 02—The GKSS test procedure for determining the fracture behaviour of materials. GKSS Research Centre, Geesthacht

    Google Scholar 

  79. Schwalbe KH, Hellmann D (1981) Application of the electrical potential method to crack length measurements using Johnson’s formula. J Test Eval 9:218–221

    Article  Google Scholar 

  80. Schwalbe KH, Kim YJ, Hao S, Cornec A, Kocak M (1997) EFAM ETM-MM 96—the ETM method for assessing the significance of crack-like defects in joints with mechanical heterogeneity (strength mismatch). GKSS Report 97/E/9. GKSS Research Centre, Geesthacht

    Google Scholar 

  81. Schwalbe KH, Neale B, Ingham T (1988) Draft EGF recommendations for determining the fracture resistance of ductile materials—EGF procedure EGF P1-87D. Fatigue Fract Eng Mater Struct 11:409–420

    Article  Google Scholar 

  82. Schwalbe KH, Shannon J, Newman J (2005) Fracture mechanics testing on specimens with low constraint—standardisation activities within ISO and ASTM. Eng Fract Mech 72:557–576

    Article  Google Scholar 

  83. Schwalbe KH, Zerbst U (2000) The engineering treatment model. Int J Press Vess Piping 77:905–918

    Article  MATH  Google Scholar 

  84. Schwalbe KH, Zerbst U, Brocks W, Cornec A, Heerens J, Amstutz H (1998) The ETM method for assessing the significance of crack-like defects in engineering structures. Fatigue Fract Eng Mater Struct 21:1215–1231

    Article  Google Scholar 

  85. Sharma SM, Aravas N (1991) Determination of higher order terms in asymptotic elastoplastic crack tip solutions. J Mech Phys Solids 39:1043–1072

    Article  MATH  Google Scholar 

  86. Shih CF, German MD (1985) Requirements for a one parameter characterization of crack tip fields by the HRR-singularity. Int J Fracture 29:73–84

    Article  Google Scholar 

  87. Shih CF, Hutchinson JW (1976) Fully plastic solutions and large-scale yielding estimates for plane stress crack problems. J Eng Mat Tech 98:289–295

    Article  Google Scholar 

  88. Siegmund T, Brocks W (1999) Prediction of the work of separation and implications to modeling. Int J Fracture 99:97–116

    Article  Google Scholar 

  89. Siegmund T, Brocks W (2000) A numerical study on the correlation between the work of separation and the dissipation rate in ductile fracture. Eng Fract Mech 67:139–154

    Article  Google Scholar 

  90. Sumpter JDG (1999) An alternative view of R-curve testing. Eng Fract Mech 64:161–176

    Article  Google Scholar 

  91. Sun DZ, Hönig A (1994) Significance of the characteristic length for micromechanical modelling of ductile fracture. In: Aliabadi MH, Carpinteri A, Kalisky S, Cartwright DJ (eds) Proceedings of third international conference on localized damage, Computational Mechanics Publications, Southhampton, pp 287–296

    Google Scholar 

  92. Sun DZ, Kienzler R, Voss B, Schmitt W (1992) Application of micro-mechanical models to the prediction of ductile fracture. In: Atluri SN, Newman JC, Raju IS, Epstein JS (eds) Fracture mechanics: twenty-second symposium ASTM STP 1131. American Society for Testing and Materials, Philadelphia, pp 368–378

    Google Scholar 

  93. Thomason PF (1985) A three-dimensional model for ductile fracture by the growth and coalescence of microvoids. Acta Metall 33:1087–1095

    Article  Google Scholar 

  94. Turner CE (1990) A re-assessment of ductile tearing resistance, Part I: The geometry dependence of J-R curves in fully plastic bending, Part II: Energy dissipation rate and associated R-curves on normalized axes. In: Firrao D (ed) Fracture behaviour and design of materials and structures, vol II. EMAS, Warley, pp 933–949, 951–968

    Google Scholar 

  95. Turner CE, Kolednik O (1994) Application of energy dissipation rate arguments to stable crack growth. Fatigue Fract Eng Mater Struct 20:1109–1127

    Article  Google Scholar 

  96. Tvergaard V (1982) On localization in ductile materials containing spherical voids. Int J Fracture 18:237–252

    Google Scholar 

  97. Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids 40:1377–1397

    Article  Google Scholar 

  98. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169

    Article  Google Scholar 

  99. Wells AA (1961) Unstable crack propagation in metals: cleavage and fast fracture. In: Proceedings of the crack propagation symposium, vol 2. Cranfield, pp 210–230

    Google Scholar 

  100. Williams ML (1957) On the stress distribution at the base of a stationary crack. J Appl Mech 24:109–114

    MathSciNet  MATH  Google Scholar 

  101. Xia L, Shih FC (1995) Ductile crack growth—I. A numerical study using computational cells with microstructurally-based length scales. J Mech Phys Solids 43:223–259

    Google Scholar 

  102. Zerbst U, Ainsworth RA, Schwalbe KH (2000) Basic principles of analytical flaw assessment methods. Int J Press Vess Pip 77:855–867

    Article  Google Scholar 

  103. Zerbst U, Schödel M, Webster S, Ainsworth R (2007) Fitness-for-service fracture assessment of structures containing cracks. Elsevier, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Brocks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Brocks, W., Schwalbe, KH. (2016). Experimental and Numerical Fracture Mechanics—An Individually Dyed History. In: Hütter, G., Zybell, L. (eds) Recent Trends in Fracture and Damage Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-21467-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21467-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21466-5

  • Online ISBN: 978-3-319-21467-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics