Skip to main content

Modeling Approaches to Predict Damage Evolution and Life Time of Brittle Ferroelectrics

  • Conference paper
  • First Online:
Recent Trends in Fracture and Damage Mechanics

Abstract

Reliability and life time of smart materials are crucial features for the development and design of actuator and sensor devices. Being widely used and exhibiting brittle failure characteristics, ceramic ferroelectrics are of particular interest in this field. Due to manifold interactions of the complex nonlinear constitutive behavior on the one hand and the damage evolution in terms of microcrack growth on the other, modeling and simulation are inevitable to investigate influence parameters on strength, reliability and life time. Two approaches are presented, both based on the same constitutive law and damage model. The one is going along with a discretisation scheme exploiting the finite element method (FEM). The so-called condensed approach, on the other hand, considers just one characteristic point in the material, nonetheless accounting for polycrystalline grain interactions. The focus of the simulations is two-fold. Life-time predictions in terms of high cycle fatigue under electromechanical loading conditions are presented based on the condensed approach. Second, the formation of macroscopic cracks at electrode tips in a stack actuator is investigated applying the FEM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen X, Fang DN, Hwang KC (1997) Micromechanics simulation of ferroelectric polarization switching. Acta Mater 45:3181–3189

    Article  Google Scholar 

  2. Cocks ACT, McMeeking RM (1999) A phenomenological constitutive law for the behavior of ferroelectric ceramics. Ferroelectrics 228:219–228

    Article  Google Scholar 

  3. Dittmer R, Webber KG, Aulbach E, Jo W, Tan X, Rödel J (2013) Electric-field-induced polarization and strain in 0.94(Ba1/2Na1/2)TiO3-0.06BaTiO3 under uniaxial stress. Acta Mater 61:1350–1358

    Article  Google Scholar 

  4. Dittmer R, Webber KG, Aulbach E, Jo W, Tan X, Rödel J (2013) Optimal working regime of lead-zirconate-titanate for actuation applications. Sensor Actuat A-Phys 189:187–194

    Article  Google Scholar 

  5. Enderlein M (2007) Finite elemente Verfahren zur bruchmechanischen Analyse von Rissen in piezoelektrischen Strukturen bei transienter elektromechanischer Belastung. PhD thesis, Freiberg

    Google Scholar 

  6. Fan J, Stoll WA, Lynch CS (1999) Nonlinear constitutive behavior of soft and hard pzt: experiments and modeling. Acta Mater 47:4415–4425

    Article  Google Scholar 

  7. Foerderreuther A (2003) Mechanische Eigenschaften von BaTiO3-Keramiken unter mechanischer und elektrischer Belastung. PhD thesis, Stuttgart

    Google Scholar 

  8. Gellmann R, Ricoeur A (2012) Extended semi-analytical investigations of crack growth resistance behavior in ferroelectric materials. Acta Mech 223:2357–2368

    Article  MathSciNet  MATH  Google Scholar 

  9. Gellmann R, Ricoeur A (2012) Some new aspects of boundary conditions at cracks in piezoelectrics. Arch Appl Mech 82:841–852

    Article  MATH  Google Scholar 

  10. Gellmann R, Ricoeur A (2014) Numerical analysis of domain switching and damage evolution in ferroelectric devices. Proc Mech Multi Mat 2:29–32

    Google Scholar 

  11. Gellmann R, Ricoeur A, Merkel E, Wang Z (2013) Generalized boundary conditions and effective properties in cracked piezoelectric solids. Proc Appl Math Mech 13:225–226

    Article  Google Scholar 

  12. Gross D, Seelig T (2011) Fracture mechanics: with an introduction to Micromechanics. Springer, Berlin

    Book  Google Scholar 

  13. Huber JE, Fleck NA (2001) Multi-axial electrical switching of a ferroelectric: theory versus experiment. J Mech Phys Solids 49:785–811

    Article  MATH  Google Scholar 

  14. Huber JE, Fleck NA, Landis CM, McMeeking RM (1999) A constitutive model for ferroelectric polycrystals. J Mech Phys Solids 47:1663–1697

    Article  MathSciNet  MATH  Google Scholar 

  15. Huo Y, Jiang Q (1997) Modeling of domain switching in polycrystalline ferroelectric cermanics. Smart Mater Struct 6:441–447

    Article  Google Scholar 

  16. Hwang SC, Lynch CS, McMeeking RM (1995) Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall Mater 43:2073–2084

    Article  Google Scholar 

  17. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London

    Google Scholar 

  18. Kachanov M (1992) Effective elastic properties of cracked solids: critical review of some basic concepts. Appl Mech Rev 45:304–335

    Article  Google Scholar 

  19. Kamlah M (2001) Ferroelectric and ferroeleastic piezoceramics—modeling of electromechanical hysteresis phenomena. Continuum Mech Thermodyn 13:219–268

    Article  MATH  Google Scholar 

  20. Kamlah M, Tsakmakis C (1999) Phenomenological modeling of non-linear electromechanical coupling in ferroelectrics. Int J Solids Struct 36:669–695

    Article  MATH  Google Scholar 

  21. Kessler H, Balke H (2001) On the local and average energy release in polarization switching phenomena. J Mech Phys Solids 49:953–978

    Article  MATH  Google Scholar 

  22. Lange S, Ricoeur A (2015) A condensed microelectromechanical approach for modeling tetragonal ferroelectrics. Int J Solids Struct 54:100–110

    Article  Google Scholar 

  23. Li F (2014) Ultrahigh superelastic and actuation strains in ferroelectric crystals by reversible electromechanical domain switching. In: 5th international congress on ceramics, Beijing p 250

    Google Scholar 

  24. Li Q, Ricoeur A, Enderlein M, Kuna M (2010) Evaluation of electromechanical coupling effect by microstructural modeling of domain switching in ferroelectrics. Mech Res Commun 37:332–336

    Article  MATH  Google Scholar 

  25. Lu W, Fang DN, Li CQ, Hwang KC (1997) Nonlinear electric-mechanical behavior and micromechanics modelling of ferroelectric domain evolution. Acta Mater 47:3181–3189

    Google Scholar 

  26. Lynch CS (1996) The effect of uniaxial stress on the electro-mechanical response of 8/65/35 plzt. Acta Mater 44:4137–4148

    Article  Google Scholar 

  27. Michelitsch T, Kreher WS (1998) A simple model for the nonlinear material behavior of ferroelectrics. Acta Mater 46:5085–5094

    Article  Google Scholar 

  28. Pak Y (1992) Linear electro-elastic fracture mechanics of piezoelectric materials. Int J Fract 54:79–100

    Article  Google Scholar 

  29. Paris P, Erdogan F (1963) A critical analysis of crack propagation laws. J Basic Eng 85:528–534

    Article  Google Scholar 

  30. Parton VZ, Kudryavtsev BA (1988) Electromagnetoelasticity. Gordon and Breach Science Publishers, New York

    Google Scholar 

  31. Ricoeur A, Kuna M (2003) Influence of electric fields on the fracture of ferroelectric ceramics. J Eur Ceram Soc 23:1313–1328

    Article  Google Scholar 

  32. Ricoeur A, Gellmann R, Wang Z (2014) Influence of inclined electric fields on the effective fracture toughness of piezoelectric ceramics. Acta Mech. doi:10.1007/s00707-014-1190-5

    Google Scholar 

  33. Salz CRJ, Hoffman M, Westram I, Rödel J (2005) Cyclic fatigue crack growth in pzt under mechanical loading. J Am Ceram Soc 88:1331–1333

    Article  Google Scholar 

  34. Sosa H (1990) On the fracture mechanics of piezoelectric solids. Int J Solids Struct 29:1–15

    Article  Google Scholar 

  35. Stephan P, Schaber K, Stephan K, Mayinger F (2010) Thermodynamik—band 2: Mehrstoffsysteme und chemische Reaktionen. Springer, Berlin

    Google Scholar 

  36. Suo Z (1993) Models for breakdown-resistant dielectric and ferroelectric ceramics. J Mech Phys Solids 41:1155–1176

    Article  Google Scholar 

  37. Wang B, Han J (2007) An accumulation damage model for fatigue fracture of ferroelectric ceramics. Eng Fract Mech 74:1456–1467

    Article  Google Scholar 

  38. Wang X, Jiang L (2003) The effective electroelastic property of piezoelectric media with parallel dielectric cracks. Int J Solids Struct 40:5287–5303

    Article  MATH  Google Scholar 

  39. Westram I, Oates WS, Lupascu DC, Roedel J, Lynch C (2007) Mechanism of electric fatigue crack growth in lead zirconate titanate. Acta Mater 55:301–312

    Article  Google Scholar 

  40. Westram I, Ricoeur A, Emmerich A, Roedel J, Kuna M (2007) Fatigue crack growth law for ferroelectrics under cyclic electrical and combined electromechanical loading. J Eur Ceram Soc 27:2485–2494

    Article  Google Scholar 

  41. Yang X, Chen C, Hu Y (2003) A static damage constitutive model for piezoelectric materials. In: Mechanics of electromagnetic solids, Kluwer Academic Publishers, pp 259–272

    Google Scholar 

  42. Zheng M, Su Y, Zhou G (1999) Damage model for flexural strength variation of ferroelectric materials induced by electric field. Theoret Appl Fract Mech 32:137–145

    Article  Google Scholar 

  43. Zhou D, Kamlah M (2005) Dielectric and piezoelectric performance of soft PZT piezoceramics under simultaneous alternating electromechanical loading. J Eur Ceram Soc 25:2415–2420

    Article  Google Scholar 

  44. Zhu T, Yang W (1999) Fatigue crack growth in ferroelectrics driven by cyclic electric loading. J Mech Phys Solids 47:81–97

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Ricoeur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ricoeur, A., Lange, S., Gellmann, R. (2016). Modeling Approaches to Predict Damage Evolution and Life Time of Brittle Ferroelectrics. In: Hütter, G., Zybell, L. (eds) Recent Trends in Fracture and Damage Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-21467-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21467-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21466-5

  • Online ISBN: 978-3-319-21467-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics