Skip to main content

Modulation of Key Signaling Pathways in Cancer Cells by Dietary Factors

  • Chapter
Critical Dietary Factors in Cancer Chemoprevention
  • 837 Accesses

Abstract

The World Health Organization has predicted new cancer rates to increase by 70 % within the next two decades. With rates expected to continue increasing in cancer incidence and mortality, chemoprevention and early diagnosis are the keys to decreasing cancer mortality. Chemoprevention is the use of natural or synthetic agents to inhibit, reverse, or prevent carcinogenesis. Studies have suggested there is a significant difference in cancer incidence among population groups with different lifestyle factors, especially diet. Phytochemicals or “nutraceuticals,” the substances present in fruits, vegetables, and plants, have beneficial effects targeting multiple key signaling molecules and perturbing the carcinogenesis process. Studies have demonstrated curcumin, resveratrol, 3,3′-diindolylmethane (DIM), and many others to hold inhibitory effects on cancer cells. There is overwhelming evidence that these nutraceuticals modulate key signaling pathways including cell cycle signaling and p53, transcription and inflammatory mediators such as NF-κB and PI3K/Akt/mTOR, and angiogenic pathways in cancer cells. Through regulation of cell signaling pathways, these dietary factors can induce cell arrest and apoptosis, and suppress proliferation and inflammation, resulting in inhibition of carcinogenesis. In this chapter, we review the effects of these nutraceuticals on some of the key signaling cellular and molecular pathways and highlight their roles as chemopreventive agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Farhan AS, Singh S, Hadi SM (2000) DNA breakage by resveratrol and Cu(II): reaction mechanism and bacteriophage inactivation. Cancer Lett 154:29–37

    Article  CAS  Google Scholar 

  • Ahmad A, Syed FA, Singh S, Hadi SM (2005) Prooxidant activity of resveratrol in the presence of copper ions: mutagenicity in plasmid DNA. Toxicol Lett 159:1–12

    Article  CAS  Google Scholar 

  • Ahmad A, Kong D, Wang Z, Sarkar SH, Banerjee S, Sarkar FH (2009a) Down-regulation of uPA and uPAR by 3,3′-diindolylmethane contributes to the inhibition of cell growth and migration of breast cancer cells. J Cell Biochem 108:916–925

    Article  CAS  Google Scholar 

  • Ahmad A, Kong D, Sarkar SH, Wang Z, Banerjee S, Sarkar FH (2009b) Inactivation of uPA and its receptor uPAR by 3,3′-diindolylmethane (DIM) leads to the inhibition of prostate cancer cell growth and migration. J Cell Biochem 107:516–527

    Article  CAS  Google Scholar 

  • Ahmad A, Biersack B, Li Y, Kong D, Bao B, Schobert R, Padhye SB, Sarkar FH (2013a) Targeted regulation of PI3K/Akt/mTOR/NF-kappaB signaling by indole compounds and their derivatives: mechanistic details and biological implications for cancer therapy. Anticancer Agents Med Chem 13:1002–1013

    Article  CAS  Google Scholar 

  • Ahmad A, Biersack B, Li Y, Kong D, Bao B, Schobert R, Padhye SB, Sarkar FH (2013b) Deregulation of PI3K/Akt/mTOR signaling pathways by isoflavones and its implication in cancer treatment. Anticancer Agents Med Chem 13:1014–1024

    Article  CAS  Google Scholar 

  • Ahmad A, Biersack B, Li Y, Bao B, Kong D, Ali S, Banerjee S, Sarkar FH (2013c) Perspectives on the role of isoflavones in prostate cancer. AAPS J 15:991–1000

    Article  CAS  Google Scholar 

  • Ahmad A, Ginnebaugh KR, Li Y, Padhye SB, Sarkar FH (2015) Molecular targets of naturopathy in cancer research: bridge to modern medicine. Nutrients 7:321–334

    Article  Google Scholar 

  • Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM, Wang Z, Philip PA, Sarkar FH (2010) Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res 70:3606–3617

    Article  CAS  Google Scholar 

  • Ali S, Ahmad A, Aboukameel A, Bao B, Padhye S, Philip PA, Sarkar FH (2012) Increased Ras GTPase activity is regulated by miRNAs that can be attenuated by CDF treatment in pancreatic cancer cells. Cancer Lett 319:173–181

    Article  CAS  Google Scholar 

  • Athar M, Back JH, Kopelovich L, Bickers DR, Kim AL (2009) Multiple molecular targets of resveratrol: anti-carcinogenic mechanisms. Arch Biochem Biophys 486:95–102

    Article  CAS  Google Scholar 

  • Banerjee S, Kong D, Wang Z, Bao B, Hillman GG, Sarkar FH (2011) Attenuation of multi-targeted proliferation-linked signaling by 3,3′-diindolylmethane (DIM): from bench to clinic. Mutat Res 728:47–66

    Article  CAS  Google Scholar 

  • Bao B, Ali S, Banerjee S, Wang Z, Logna F, Azmi AS, Kong D, Ahmad A, Li Y, Padhye S, Sarkar FH (2012) Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res 72:335–345

    Article  CAS  Google Scholar 

  • Beevers CS, Zhou H, Huang S (2013) Hitting the golden TORget: curcumin’s effects on mTOR signaling. Anticancer Agents Med Chem 13:988–994

    Article  CAS  Google Scholar 

  • Bilecova-Rabajdova M, Birkova A, Urban P, Gregova K, Durovcova E, Marekova M (2013) Naturally occurring substances and their role in chemo-protective effects. Cent Eur J Public Health 21:213–219

    CAS  Google Scholar 

  • Bishayee A (2009) Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res (Phila) 2:409–418

    Article  CAS  Google Scholar 

  • Bosetti C, Filomeno M, Riso P, Polesel J, Levi F, Talamini R, Montella M, Negri E, Franceschi S, La VC (2012) Cruciferous vegetables and cancer risk in a network of case-control studies. Ann Oncol 23:2198–2203

    Article  CAS  Google Scholar 

  • Bush JA, Cheung KJ Jr, Li G (2001) Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp Cell Res 271:305–314

    Article  CAS  Google Scholar 

  • Cao AL, Tang QF, Zhou WC, Qiu YY, Hu SJ, Yin PH (2014) Ras/ERK signaling pathway is involved in curcumin-induced cell cycle arrest and apoptosis in human gastric carcinoma AGS cells. J Asian Nat Prod Res 17(1):56–63

    Article  Google Scholar 

  • Chang X, Tou JC, Hong C, Kim HA, Riby JE, Firestone GL, Bjeldanes LF (2005) 3,3′-Diindolylmethane inhibits angiogenesis and the growth of transplantable human breast carcinoma in athymic mice. Carcinogenesis 26:771–778

    Article  CAS  Google Scholar 

  • Choi HJ, Lim DY, Park JH (2009) Induction of G1 and G2/M cell cycle arrests by the dietary compound 3,3′-diindolylmethane in HT-29 human colon cancer cells. BMC Gastroenterol 9:39

    Article  Google Scholar 

  • Choudhuri T, Pal S, Das T, Sa G (2005) Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem 280:20059–20068

    Article  CAS  Google Scholar 

  • Dandawate PR, Vyas A, Ahmad A, Banerjee S, Deshpande J, Swamy KV, Jamadar A, Dumhe-Klaire AC, Padhye S, Sarkar FH (2012) Inclusion complex of novel curcumin analogue CDF and beta-cyclodextrin (1:2) and its enhanced in vivo anticancer activity against pancreatic cancer. Pharm Res 29:1775–1786

    Article  CAS  Google Scholar 

  • Frojdo S, Cozzone D, Vidal H, Pirola L (2007) Resveratrol is a class IA phosphoinositide 3-kinase inhibitor. Biochem J 406:511–518

    Article  Google Scholar 

  • Hadi SM, Asad SF, Singh S, Ahmad A (2000) Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life 50:167–171

    Article  CAS  Google Scholar 

  • Hadi SM, Ullah MF, Azmi AS, Ahmad A, Shamim U, Zubair H, Khan HY (2010) Resveratrol mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for chemoprevention of cancer. Pharm Res 27:979–988

    Article  CAS  Google Scholar 

  • Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236

    Article  CAS  Google Scholar 

  • Hsieh TC, Wu JM (2010) Resveratrol: biological and pharmaceutical properties as anticancer molecule. Biofactors 36:360–369

    Article  CAS  Google Scholar 

  • Hussain AR, Uddin S, Bu R, Khan OS, Ahmed SO, Ahmed M, Al-Kuraya KS (2011) Resveratrol suppresses constitutive activation of AKT via generation of ROS and induces apoptosis in diffuse large B cell lymphoma cell lines. PLoS One 6:e24703

    Article  CAS  Google Scholar 

  • Jakus PB, Kalman N, Antus C, Radnai B, Tucsek Z, Gallyas F Jr, Sumegi B, Veres B (2013) TRAF6 is functional in inhibition of TLR4-mediated NF-kappaB activation by resveratrol. J Nutr Biochem 24:819–823

    Article  CAS  Google Scholar 

  • Jiang AJ, Jiang G, Li LT, Zheng JN (2014) Curcumin induces apoptosis through mitochondrial pathway and caspases activation in human melanoma cells. Mol Biol Rep 42(1):267–275

    Article  Google Scholar 

  • Kang OH, Jang HJ, Chae HS, Oh YC, Choi JG, Lee YS, Kim JH, Kim YC, Sohn DH, Park H, Kwon DY (2009) Anti-inflammatory mechanisms of resveratrol in activated HMC-1 cells: pivotal roles of NF-kappaB and MAPK. Pharmacol Res 59:330–337

    Article  CAS  Google Scholar 

  • Kangwan N, Park JM, Kim EH, Hahm KB (2014) Chemoquiescence for ideal cancer treatment and prevention: where are we now? J Cancer Prev 19:89–96

    Article  Google Scholar 

  • Khan A, Aljarbou AN, Aldebasi YH, Faisal SM, Khan MA (2014a) Resveratrol suppresses the proliferation of breast cancer cells by inhibiting fatty acid synthase signaling pathway. Cancer Epidemiol 38:765–772

    Article  Google Scholar 

  • Khan HY, Zubair H, Faisal M, Ullah MF, Farhan M, Sarkar FH, Ahmad A, Hadi SM (2014b) Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: a mechanism for cancer chemopreventive action. Mol Nutr Food Res 58:437–446

    Article  CAS  Google Scholar 

  • Kim EJ, Park H, Kim J, Park JH (2010) 3,3′-diindolylmethane suppresses 12-O-tetradecanoylphorbol-13-acetate-induced inflammation and tumor promotion in mouse skin via the downregulation of inflammatory mediators. Mol Carcinog 49:672–683

    Article  CAS  Google Scholar 

  • Kong D, Li Y, Wang Z, Banerjee S, Sarkar FH (2007) Inhibition of angiogenesis and invasion by 3,3′-diindolylmethane is mediated by the nuclear factor-kappaB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer. Cancer Res 67:3310–3319

    Article  CAS  Google Scholar 

  • Kulkarni SS, Canto C (2014) The molecular targets of resveratrol. Biochim Biophys Acta 1852:1114–1123

    Article  Google Scholar 

  • La VC (2009) Association between Mediterranean dietary patterns and cancer risk. Nutr Rev 67(Suppl 1):S126–S129

    Google Scholar 

  • Liu E, Wu J, Cao W, Zhang J, Liu W, Jiang X, Zhang X (2007) Curcumin induces G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression in human glioma. J Neurooncol 85:263–270

    Article  CAS  Google Scholar 

  • Liu M, Wilk SA, Wang A, Zhou L, Wang RH, Ogawa W, Deng C, Dong LQ, Liu F (2010) Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. J Biol Chem 285:36387–36394

    Article  CAS  Google Scholar 

  • Liu B, Zhou Z, Zhou W, Liu J, Zhang Q, Xia J, Liu J, Chen N, Li M, Zhu R (2014) Resveratrol inhibits proliferation in human colorectal carcinoma cells by inducing G1/Sphase cell cycle arrest and apoptosis through caspase/cyclinCDK pathways. Mol Med Rep 10:1697–1702

    CAS  Google Scholar 

  • Maruthanila VL, Poornima J, Mirunalini S (2014) Attenuation of carcinogenesis and the mechanism underlying by the influence of indole-3-carbinol and its metabolite 3,3′-diindolylmethane: a therapeutic marvel. Adv Pharmacol Sci 2014:832161

    CAS  Google Scholar 

  • Orr WS, Denbo JW, Saab KR, Ng CY, Wu J, Li K, Garner JM, Morton CL, Du Z, Pfeffer LM, Davidoff AM (2013) Curcumin potentiates rhabdomyosarcoma radiosensitivity by suppressing NF-kappaB activity. PLoS One 8:e51309

    Article  CAS  Google Scholar 

  • Parasramka MA, Gupta SV (2012) Synergistic effect of garcinol and curcumin on antiproliferative and apoptotic activity in pancreatic cancer cells. J Oncol 2012:709739

    Article  Google Scholar 

  • Ravindran J, Prasad S, Aggarwal BB (2009) Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J 11:495–510

    Article  CAS  Google Scholar 

  • Shakibaei M, Mobasheri A, Lueders C, Busch F, Shayan P, Goel A (2013) Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-kappaB and Src protein kinase signaling pathways. PLoS One 8:e57218

    Article  CAS  Google Scholar 

  • Steward WP, Brown K (2013) Cancer chemoprevention: a rapidly evolving field. Br J Cancer 109:1–7

    Article  CAS  Google Scholar 

  • Tadi K, Chang Y, Ashok BT, Chen Y, Moscatello A, Schaefer SD, Schantz SP, Policastro AJ, Geliebter J, Tiwari RK (2005) 3,3′-Diindolylmethane, a cruciferous vegetable derived synthetic anti-proliferative compound in thyroid disease. Biochem Biophys Res Commun 337:1019–1025

    Article  CAS  Google Scholar 

  • Vyas A, Dandawate P, Padhye S, Ahmad A, Sarkar F (2013) Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr Pharm Des 19:2047–2069

    CAS  Google Scholar 

  • Weng JR, Bai LY, Chiu CF, Wang YC, Tsai MH (2012) The dietary phytochemical 3,3′-diindolylmethane induces G2/M arrest and apoptosis in oral squamous cell carcinoma by modulating Akt-NF-kappaB, MAPK, and p53 signaling. Chem Biol Interact 195:224–230

    Article  CAS  Google Scholar 

  • Wilken R, Veena MS, Wang MB, Srivatsan ES (2011) Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 10:12

    Article  CAS  Google Scholar 

  • Zhang WW, Feng Z, Narod SA (2014) Multiple therapeutic and preventive effects of 3,3′-diindolylmethane on cancers including prostate cancer and high grade prostatic intraepithelial neoplasia. J Biomed Res 28:339–348

    CAS  Google Scholar 

  • Zhou H, Beevers CS, Huang S (2011) Targets of curcumin. Curr Drug Targets 12:332–347

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Ahmad Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ali, A., Ahmad, A. (2016). Modulation of Key Signaling Pathways in Cancer Cells by Dietary Factors. In: Ullah, M., Ahmad, A. (eds) Critical Dietary Factors in Cancer Chemoprevention. Springer, Cham. https://doi.org/10.1007/978-3-319-21461-0_13

Download citation

Publish with us

Policies and ethics