Skip to main content

Moving from Patterns to Processes: A Challenge for the Phytosociology of the Twenty-First Century?

  • Chapter
Vegetation Structure and Function at Multiple Spatial, Temporal and Conceptual Scales

Part of the book series: Geobotany Studies ((GEOBOT))

Abstract

Phytosociology and ecology are often viewed as two distinct scientific disciplines though both emerged from phytogeography in the second half of the nineteenth century. Here we propose an epistemological essay of the “science of plant communities” in which the reasons behind the divergence between phytosociology and ecology are analyzed. While ecology incorporated the progress made by life chemistry, making ecology more functional than descriptive, syntaxonomy and synsystematics rapidly made phytosociology an esoteric science and contributed to the conflicts among the different European schools. As animal ecology began to develop ecology became “the science of ecosystems”, a field of biology, phytosociology stayed closer to geography. However, with the emergence of the integrated synusial method, phytosociology began to re-connect with ecology, by taking into account functional considerations provided by general system theory, hierarchy theory and landscape ecology. We stress on three challenges that phytosociology should meet to find its niche in plant ecology: being more functional; incorporating recent advances in dispersal vs. niche assembly rules; and withdrawing old-fashioned, static concepts such as the climax. The future of phytosociology includes providing ecology with high-quality field data through its robust methodology, but perhaps with a more process-oriented sampling strategy. In this respect, the integrated synusial approach is inherently better suited to serve ecology by reflecting the complexity of plant communities in both space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler PB, White EP, Lauenroth WK, Kaufman DM, Rassweiler A, Rusak JA (2005) Evidence for a general species-time-area relationship. Ecology 86:2032–2039

    Article  Google Scholar 

  • Allen TFH, Starr TB (1982) Hierarchy: perspective for ecological complexity. University Chicago Press, Chicago

    Google Scholar 

  • Barkman JJ (1988) New systems of plant growth forms and phenological plant types. In: Werger MJA et al (eds) Plant form and vegetation structure. SPB Academy Publications, The Hague, pp 9–44

    Google Scholar 

  • Bertrand R, Lenoir J, Piedallu C, Riofrio-Dillon G, de Ruffray P, Vidal C, Pierrat JC, Gégout JC (2011) Changes in plant community composition lag behind climate warming in lowland forests. Nature 479:517–520

    Article  Google Scholar 

  • Braun-Blanquet J, Pavillard J (1922) Vocabulaire de sociologie végétale. Romégou et Dehan, Montpellier, 23 pp

    Google Scholar 

  • Cadotte MW (2007) Concurrent niche and neutral processes in the competition-colonization model of species coexistence. Proc R Soc Lond B Biol 274:2739–2744

    Article  Google Scholar 

  • Chiarucci A, Araujo MB, Decocq G, Belerkuhnlein J, Fernandez-Palacios M (2010) The concept of potential natural vegetation: an epitaph? J Veg Sci 21:1172–1178

    Article  Google Scholar 

  • Chytrý M, Tichý L, Hennekens SM, Schaminée JHJ (2014) Assessing vegetation change using vegetation-plot data-bases: a risky business. Appl Veg Sci 17:32–41

    Article  Google Scholar 

  • Clements FE (1905) Research methods in ecology. University Publishing Company, Lincoln, NE

    Book  Google Scholar 

  • Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Institution, Washington, 512 pp

    Book  Google Scholar 

  • Clements FE (1936) Nature and structure of the climax. J Ecol 24:252–284

    Article  Google Scholar 

  • Cowles HC (1899) The ecological relations of the vegetation on the sand dunes of Lake Michigan. Bot Gaz 27:95–117

    Article  Google Scholar 

  • Cowles HC (1901) Plant societies of Chicago and vicinity. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Curtis JT (1959) The vegetation of Wisconsin: an ordination of plant communities. University of Wisconsin Press, Madison, 657 pp

    Google Scholar 

  • Darwin C (1859) On the origin of the species by means of natural selection. John Murray, London

    Google Scholar 

  • de Candolle AP (1855) Géographie botanique raisonnée, vol 2. Librairie de Victor Masson, Paris

    Google Scholar 

  • de Foucault B (1984) Systémique, structuralisme et synsystématique des prairies hygrophiles des plaines atlantiques française. Doctoral thesis, Université de Rouen, Rouen

    Google Scholar 

  • de Foucault B (1986) La phytosociologie sigmatiste: une morphophysique. Faculté de Pharmacie, Lille, 147 pp

    Google Scholar 

  • Decocq G (2000) Apports de l’approche systémique des phénomènes phytodynamiques en phytosociologie forestière. In: Géhu JM (ed) Les données de la phytosociologie sigmatiste: structure, gestion, utilisation. J. Cramer, Berlin, pp 767–788

    Google Scholar 

  • Decocq G (2006) Determinism, chaos and stochasticity in plant community successions: consequence for phytosociology and conservation ecology. In: Gafta D, Akeroyd J (eds) Nature conservation: concepts and practice. Springer, Berlin, pp 254–266

    Chapter  Google Scholar 

  • Deléage JP (1991) Histoire de l’écologie. Une science de l’homme et de la nature. La Découverte, Paris

    Google Scholar 

  • Dengler J, Jansen F, Glöckler F, Peet RK, De Cáceres M, Chytrý M, Ewald J, Oldeland J, Lopez-Gonzalez G, Finckh M, Mucina L, Rodwell JS, Schaminée JHJ, Spencer N (2011) The global index of vegetation-plot data-bases (GIVD): a new resource for vegetation science. J Veg Sci 22:582–597

    Article  Google Scholar 

  • Díaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. J Veg Sci 8:463–474

    Article  Google Scholar 

  • Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655

    Article  Google Scholar 

  • Dolédec S, Chessel D, Ter Braak CFJ, Champely S (1996) Matching species traits to environmental variables: a new three-table ordination method. Environ Ecol Stat 3:143–166

    Article  Google Scholar 

  • Droin JM (1991) Réinventer la nature, l’écologie et son histoire. Desclée de Brouwer, Paris

    Google Scholar 

  • Du Rietz GE (1917) Några synpunkter på den synekologiska vegetations beskrifningens terminologi och metodik. Svensk Bot Tidskr 11:81–71

    Google Scholar 

  • Du Rietz GE (1930) Classification and nomenclature of vegetation. Svensk Bot Tidskr 24:489–503

    Google Scholar 

  • Du Rietz GE (1966) Biozönosen und Synusien in der Pflanzensoziologie. Ber Int Symp Vegetationskunde Stolzenau-Weser 4:23–42

    Google Scholar 

  • Duvigneaud P (1946) La variabilité des associations végétales. Bull Soc Roy Bot Belgique 78:107–134

    Google Scholar 

  • Ellenberg H (1954) Landwirtschaftliche Pflanzensoziologie, vol I, Unkrautgemeinschaften als Zeiger für Klima und Boden. Ulmer, Stuttgart, 141 pp

    Google Scholar 

  • Elton CS (1927) Animal ecology. Macmillan Co, New York

    Google Scholar 

  • Flahault C (1907) La végétation du Val de Poschiavo. La Géographie 16:236–241

    Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. Wiley, New York

    Google Scholar 

  • Freestone AL, Inouye BD (2006) Dispersal limitation and environmental heterogeneity shape scale-dependent diversity patterns in plant communities. Ecology 87:2425–2432

    Article  Google Scholar 

  • Géhu JM, Rivas-Martínez S (1981) Notions fondamentales de phytosociologie. In: Dierschke H (ed) Berichte der Internationalen Symposien der Internationalen Vereinigung für Vegetationkunde. J. Cramer, Vaduz, pp 5–33

    Google Scholar 

  • Gillet F (1986) L’approche synusiale intégrée des phytocœnoses forestières: Application aux forêts du Jura. Coll Phytosociol 14:81–92

    Google Scholar 

  • Gillet F, Gallandat JD (1996) Integrated synusial phytosociology: some notes on a new multi-scalar approach to vegetation analysis. J Veg Sci 7:13–18

    Article  Google Scholar 

  • Gillet F, de Foucault B, Julve P (1991) La phytosociologie synusiale intégrée: objets et concepts. Candollea 46:315–340

    Google Scholar 

  • Gleason HA (1917) The structure and development of the plant association. Bull Torrey Bot Club 43:463–481

    Article  Google Scholar 

  • Gleason HA (1926) The individualistic concept of the plant association. Bull Torrey Bot Club 53:7–26

    Article  Google Scholar 

  • Gleason HA (1939) The individualistic concept of the plant association. Am Midl Nat 21:92–108

    Article  Google Scholar 

  • Gounot M (1969) Méthodes d’étude quantitative de la végétation. Masson, Paris, 314 pp

    Google Scholar 

  • Granville JJ (1993) Les formations végétales primaires de la zone intérieure de Guyane. In: Forêt Guyanaise; Gestion de l’Ecosystème Forestier et Aménagement de l’Espace Régional. Actes du 2e Congrès Régional de l’Environnement. Nature Guyanaise, n° spécial. SEPANGUY/C.C.C.E., Cayenne, pp 21–40

    Google Scholar 

  • Grime JP (1974) Vegetation classification by reference to strategies. Nature 250:26–31

    Article  Google Scholar 

  • Grisebach A (1884) Die Vegetation der Erde nach ihrer klimatischen Anordnung, 2nd edn. W. Engelmann, Leipzig

    Google Scholar 

  • Haeckel E (1866) Generelle Morphologie der Organismen. Reimer, Berlin

    Book  Google Scholar 

  • Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE (1999) An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conserv 91:9–22

    Article  Google Scholar 

  • Hubbell SP (2001) A unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimeš L, Klimešová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Götzenberger L, Hodgson JG, Jackel A-K, Kühn I, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA traitbase: a data-base of life-history traits of the Northwest European flora. J Veg Sci 96:1266–1274

    Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:546–556

    Article  Google Scholar 

  • Lavorel S, McIntyre S, Landsberg J, Forbes TDA (1997) Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol Evol 17:474–478

    Article  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Lenoir J, Gégout JC, Marquet PA, De Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771

    Article  Google Scholar 

  • Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–418

    Article  Google Scholar 

  • Lippmaa T (1933) La méthode des associations unistrates et le système écologique des associations. Acta Inst Horti Bot Tartu 4:1–7

    Google Scholar 

  • Lippmaa T (1939) The unistratal concept of plant communities (the unions). Am Mid Nat 21:111–145

    Article  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasion. Trends Ecol Evol 20:223–228

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • O’Neill RV (2001) Is it time to bury the ecosystem concept? (with full military honors, of course!). Ecology 82:3275–3284

    Google Scholar 

  • Odum EP, Odum HT (1953) Fundamentals of ecology. Saunders, Philadelphia

    Google Scholar 

  • Osvald H (1923) Die Vegetation des Hochmoores Komosse. Svenska Växtsociol Sällsk Handl 1:1–436

    Google Scholar 

  • Primack RB, Miao SL (1992) Dispersal can limit local plant distribution. Conserv Biol 6:513–519

    Article  Google Scholar 

  • Raunkiaer C (1934) The life forms and statistical plant geography. Clarendon, Oxford, 632 pp

    Google Scholar 

  • Ribera I, Dolédec S, Downie IS, Foster GN (2001) Effect of land disturbance and stress on species traits of ground-beetle assemblages. Ecology 82:1112–1129

    Article  Google Scholar 

  • Ricklefs RE, Schluter D (1993) Species diversity: regional and historical influences. In: Ricklefs RE, Schluter D (eds) Ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago, pp 350–363

    Google Scholar 

  • Schmithüsen J (1968) Allgemeine Vegetationsgeographie, 3rd edn. Gruyter & Co, Berlin, 463 pp

    Google Scholar 

  • Schouw JF (1822) Grundtraek til en almindelig Plantegeografie. Gyldendalske Boghandels Forlag, Kjøbenhavn

    Google Scholar 

  • Semenova GV, van der Maarel E (2000) Plant functional types: a strategic perspective. J Veg Sci 11:917–922

    Article  Google Scholar 

  • Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259–268

    Article  Google Scholar 

  • Sutherland JP (1990) Perturbations, resistance and alternative views of the existence of multiple stable points in nature. Am Nat 136:270–275

    Article  Google Scholar 

  • Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T, Cameron DD, Carmel Y, Coomes DA, Coulson T, Emmerson MC, Hails RS, Hays GC, Hodgson DJ, Hutchings MJ, Johnson D, Jones JPG, Keeling MJ, Kokko H, Kunin WE, Lambin X, Lewis OT, Malhi Y, Mieszkowska N, Milner-Gulland EJ, Norris K, Phillimore AB, Purves DW, Reid JM, Reuman DC, Thompson K, Travis JMJ, Turnbull LA, Wardle DA, Wiegand T (2013) Identification of 100 fundamental ecological questions. J Ecol 101:58–67

    Article  Google Scholar 

  • Tansley AG (1935) The use and abuse of vegetational concepts and terms. Ecology 16:284–307

    Article  Google Scholar 

  • Tüxen R (1956) Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung. Angew Pflanzensoziologie (Stolzenau) 13:5–42

    Google Scholar 

  • Tüxen R (1973) Vorschlag zur Aufnahme von Gesellschaftskomplexen in potentiell natürlichen Vegetationsgebieten. Acta Bot Acad Sci Hungar 19:379–384

    Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • von Bertalanffy L (1968) General system theory: foundations, development, applications. George Braziller, New York

    Google Scholar 

  • Warming E (1895) Plantesamfund—Grundtræk af den økologiske Plantegeografi. P. G Philipsens Forlag, Kjøbenhavn, 335 pp

    Google Scholar 

  • Weber HE, Moravec J, Theurillat JP (2000) International code of phytosociological nomenclature. 3rd edition. J Veg Sci 11:739–768

    Article  Google Scholar 

  • Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620

    Article  Google Scholar 

  • Weisman A (2007) The world without us. Virgin Books Ltd, London, 324 pp

    Google Scholar 

  • Whittaker RH (1956) Vegetation of the great smoky mountains. Ecol Monogr 26:1–80

    Article  Google Scholar 

  • Zobel M (1997) The relative importance of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends Ecol Evol 12:266–269

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Decocq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Decocq, G. (2016). Moving from Patterns to Processes: A Challenge for the Phytosociology of the Twenty-First Century?. In: Box, E. (eds) Vegetation Structure and Function at Multiple Spatial, Temporal and Conceptual Scales. Geobotany Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-21452-8_18

Download citation

Publish with us

Policies and ethics