Skip to main content

Thermoeletric Heusler Compounds

  • Chapter
  • First Online:
Heusler Alloys

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 222))

Abstract

Thermoelectric converters for power generation aim at reducing CO\(_2\) emission via the conversion of a part of the low-grade waste heat generated by engines, industrial furnaces, gas pipes, etc. to electricity. The recovery of waste heat from the exhaust of an automotive engine, in particular, is an attractive, albeit not very efficient way for reduction of fuel consumption. Thermoelectric converters with high overall efficiency convert heat directly into electricity without moving parts and, thus, not only decrease our reliance on fossil fuels but also actively counteract global warming. State-of-the-art converters are simply too inefficient to be economic, partly due to expensive elementary constituents (Te, Ge, etc.). On this background, Heusler compounds with C1\(_b\) structure stand out on account of their relatively low cost components and have been extensively studied as potential thermoelectric materials for high temperature power generation up to 1000 K during the last years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://flowcharts.llnl.gov/. 2014

  2. J. Yang, F.R. Stabler, J. Electron. Mater. 38, 1245 (2009)

    Article  Google Scholar 

  3. K. Schierle-Arndt, W. Hermes, Chemie in unserer Zeit 47, 92 (2013)

    Article  Google Scholar 

  4. T.M. Tritt, Annu. Rev. Mater. Res. 41, 433 (2011)

    Article  Google Scholar 

  5. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)

    Article  Google Scholar 

  6. P. Ball, T. Caillat, MRS Bulletin Energy Quarterly, June Energy Quarterly Thermoelectric Heat Recovery could boots Auto Fule Economy (2011)

    Google Scholar 

  7. B.C. Sales, Science 295, 1248 (2002)

    Article  Google Scholar 

  8. J. Yang, T. Caillat, MRS Bull. 31, 224 (2006)

    Article  Google Scholar 

  9. A. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, London, 1957)

    Google Scholar 

  10. A. Ioffe, Sci. Am. 199, 31 (1958)

    Article  Google Scholar 

  11. H. Goldsmid, Applications of Thermoelectricity, Methuen’s Monographs on Physical Subjects (Methuen, London, 1960)

    Google Scholar 

  12. G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, Berlin, 2001)

    Book  Google Scholar 

  13. J.R. Sootsman, D.Y. Chung, M. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009)

    Article  Google Scholar 

  14. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

    Article  Google Scholar 

  15. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993)

    Article  Google Scholar 

  16. G.A. Slack, in CRC Handbook of Thermoelectrics, ed. by D.M. Rowe (CRC, 1995), pp. 407–440

    Google Scholar 

  17. K. Nielsch, J. Bachmann, J. Kimling, H. Böttner, Adv. Energy Mater. 1, 713 (2011)

    Article  Google Scholar 

  18. G.J. Snyder, Appl. Phys. Lett. 84, 2436 (2004)

    Article  Google Scholar 

  19. W. Liu, X. Yan, G. Chen, Z. Ren, Nano Energy 1, 42 (2012)

    Article  Google Scholar 

  20. Z.-G. Chen, G. Han, L. Yang, L. Cheng, J. Zou, Prog. Nat. Sci.: Mater. Int. 22, 535 (2012)

    Article  Google Scholar 

  21. P. Pichanusakorn, P. Bandaru, Mater. Sci. Eng.: R: Rep. 67, 19 (2010)

    Article  Google Scholar 

  22. H. Alam, S. Ramakrishna, Nano Energy 2, 190 (2013)

    Article  Google Scholar 

  23. W. Jeischko, Metall. Mater. Trans. B 1, 3159 (1970)

    Google Scholar 

  24. H.C. Kandpal, C. Felser, R. Seshadri, J. Phys. D: Appl. Phys 39, 776 (2006)

    Article  Google Scholar 

  25. F. Heusler, Verh. d. DPG 5, 219 (1903)

    Google Scholar 

  26. L.O. Grondahl, S. Karrer, Phys. Rev. Ser. I 33, 531 (1911)

    Google Scholar 

  27. S. Chen, Z. Ren, Mater. Today 16, 387 (2013)

    Article  Google Scholar 

  28. F. Casper, T. Graf, S. Chadov, B. Balke, C. Felser, Semicond. Sci. Technol. 27 (2012)

    Google Scholar 

  29. S.J. Poon, D. Wu, S. Zhu, W. Xie, T.M. Tritt, P. Thomas, R. Venkatasubramanian, J. Mater. Res. 26, 2795 (2011)

    Article  Google Scholar 

  30. M. Schwall, B. Balke, Phys. Chem. Chem. Phys. 15, 1868 (2013)

    Article  Google Scholar 

  31. K. Bartholomé, B. Balke, D. Zuckermann, M. Köhne, M. Müller, K. Tarantik, Jan König, J. Electron. Mater. 43, 1775 (2014)

    Google Scholar 

  32. G. Joshi, T. Dahal, S. Chen, H.Z. Wang, J. Shiomi, G. Chen, Z.F. Ren, Nano Energy 2, 82 (2013)

    Article  Google Scholar 

  33. T. Jäger, C. Mix, M. Schwall, X. Kozina, J. Barth, B. Balke, M. Finsterbusch, Y.U. Idzerda, C. Felser, G. Jakob, Thin Solid Films 520, 1010 (2011)

    Article  Google Scholar 

  34. X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J.W. Simonson, S.J. Poon, T.M. Tritt, G. Chen et al., Nano Lett. 11, 556 (2011)

    Article  Google Scholar 

  35. X. Yan, W. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani, H. Wang, D. Wang, G. Chen, Z. Ren, Energy Environ. Sci. 5, 7543 (2012)

    Article  Google Scholar 

  36. P.H. Ngan, D.V. Christensen, G.J. Snyder, L.T. Hung, S. Linderoth, N.V. Nong, N. Pryds, phys. Status Solidi (a) 211, 9 (2014)

    Google Scholar 

  37. M. Schwall, B. Balke, Appl. Phys. Lett. 98, 042106 (2011)

    Article  Google Scholar 

  38. C.S. Birkel, W.G. Zeier, J.E. Douglas, B.R. Lettiere, C.E. Mills, G. Seward, A. Birkel, M.L. Snedaker, Y. Zhang, G.J. Snyder et al., Chem. Mater. 24, 2558 (2012)

    Article  Google Scholar 

  39. J.W. Simonson, D. Wu, W.J. Xie, T.M. Tritt, S.J. Poon, Phys. Rev. B 83, 235211 (2011)

    Article  Google Scholar 

  40. H. Hazama, M. Matsubara, R. Asahi, J. Electron. Mater. 41, 1730 (2012)

    Article  Google Scholar 

  41. H.-H. Xie, C. Yu, T.-J. Zhu, C.-G. Fu, G.J. Snyder, X.-B. Zhao, Appl. Phys. Lett. 100, 254104 (2012)

    Article  Google Scholar 

  42. M.-S. Lee, F.P. Poudeu, S.D. Mahanti, Phys. Rev. B 83, 085204 (2011)

    Article  Google Scholar 

  43. Y. Gelbstein, N.T.A. Yarmek, Y. Rosenberg, M.P. Dariel, S. Ouardi, B. Balke, C. Felser, M.Köhne, J. Mater. Res. 26 (2011)

    Google Scholar 

  44. M. Mikami, Y. Kinemuchi, K. Ozaki, Y. Terazawa, T. Takeuchi, J. Appl. Phys. 111, 093710 (2012)

    Google Scholar 

  45. J.P.A. Makongo, D.K. Misra, X. Zhou, A. Pant, M.R. Shabetai, X. Su, C. Uher, K.L. Stokes, and Pierre F.P. Poudeu, J. Am. Chem. Soc. 133, 18843 (2011)

    Google Scholar 

  46. M.A. Verges, P.J. Schilling, P. Upadhyay, W.K. Miller, R. Yaqub, K.L. Stokes, P.F.P. Poudeu, Sci. Adv. Mater. 3, 659 (2011)

    Article  Google Scholar 

  47. P. Klaer, M. Kallmayer, C.G.F. Blum, T. Graf, J. Barth, B. Balke, G.H. Fecher, C. Felser, H.J. Elmers, Phys. Rev. B 80, 144405 (2009)

    Article  Google Scholar 

  48. P. Klaer, T. Bos, M. Kallmayer, C.G.F. Blum, T. Graf, J. Barth, B. Balke, G.H. Fecher, C. Felser, H.J. Elmers, Phys. Rev. B 82, 104410 (2010)

    Article  Google Scholar 

  49. C. Yu, T. Zhu, K. Xiao, J. Shen, X. Zhao, Funct. Mater. Lett. 03, 227 (2010)

    Article  Google Scholar 

  50. J.E. Garay, Annu. Rev. Mater. Res. 40, 445 (2010)

    Article  Google Scholar 

  51. C.S. Birkel, J.E. Douglas, B.R. Lettiere, G. Seward, N. Verma, Y. Zhang, T.M. Pollock, R. Seshadri, G.D. Stucky, Phys. Chem. Chem. Phys. 15, 6990 (2013)

    Article  Google Scholar 

  52. M. Zou, J.-F. Li, B. Du, D. Liu, T. Kita, J. Solid State Chem. 182, 3138 (2009)

    Article  Google Scholar 

  53. C. Wang, J. Meyer, N. Teichert, A. Auge, E. Rausch, B. Balke, A. Hütten, G.H. Fecher, C. Felser, J. Vac. Sci. Technol. B 32, 020802 (2014)

    Article  Google Scholar 

  54. S. Ouardi, G.H. Fecher, B. Balke, X. Kozina, G. Stryganyuk, C. Felser, S. Lowitzer, D. Ködderitzsch, H. Ebert, E. Ikenaga, Phys. Rev. B 82, 085108 (2010)

    Google Scholar 

  55. S. Ouardi, G.H. Fecher, C. Felser, M. Schwall, S.S. Naghavi, A. Gloskovskii, B. Balke, J. Hamrle, K. Postava, J. Pištora et al., Phys. Rev. B 86, 045116 (2012)

    Article  Google Scholar 

  56. K. Miyamoto, K. Kimura, K. Sakamoto, M. Ye, Y. Cui, K. Shimada, H. Namatame, M. Taniguchi, S.I. Fujimori, Y. Saitoh, E. Ikenaga, K. Kobayashi, J. Tadano, T. Kanomata, Appl. Phys. Express 1, 081901 (2008)

    Article  Google Scholar 

  57. S. Ouardi, G.H. Fecher, B. Balke, M. Schwall, X. Kozina, G. Stryganyuk, C. Felser, E. Ikenaga, Y. Yamashita, S. Ueda et al., Appl. Phys. Lett. 97, 252113 (2010)

    Article  Google Scholar 

  58. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (CRC Taylor & Francis, Boca Raton, 2006)

    Google Scholar 

  59. J. Yang, Adv. Funct. Mater. 18, 2880 (2008)

    Article  Google Scholar 

  60. A. Horyn’, O. Bodak, L. Romaka, Y. Gorelenko, A. Tkachuk, V. Davydov, Y. Stadnyk, J. Alloy. Compd. 363, 10 (2004)

    Article  Google Scholar 

  61. J.M. Ziman, Electrons and Phonons (Oxford University Press, Oxford, 1960)

    Google Scholar 

  62. S.R. Culp, J.W. Simonson, S.J. Poon, V. Ponnambalam, J. Edwards, T.M. Tritt, Appl. Phys. Lett. 93, 022105 (2008)

    Article  Google Scholar 

  63. S. Sakurada, N. Shutoh, Appl. Phys. Lett. 86, 2105 (2005)

    Article  Google Scholar 

  64. X. Yan, W. Liu, S. Chen, H. Wang, Q. Zhang, G. Chen, Z. Ren, Adv. Energy Mater. 3, 1195 (2013)

    Article  Google Scholar 

  65. J. Tobola, J. Pierre, S. Kaprzyk, R.V. Skolozdra, M.A. Kouacou, J. Phys. Condens. Matter 10, 1013 (1998)

    Article  Google Scholar 

  66. J. Krez, J. Schmitt, G.J. Snyder, C. Felser, W. Hermes, M. Schwind, J. Mater. Chem. A 2,13513 (2014)

    Google Scholar 

  67. H. Xie, H. Wang, Y. Pei, C. Fu, X. Liu, G.J. Snyder, X. Zhao, T. Zhu, Adv. Funct. Mater. 23, 5123 (2013)

    Article  Google Scholar 

  68. H. Hohl, A. Ramirez, W. Kaefer, K. Fess, Ch. Thurner, Ch. Kloc, E. Bucher, Mater. Res. Soc. Symp. Proc. 478, 109 (1997)

    Article  Google Scholar 

  69. H. Hohl, A. Ramirez, C. Goldmann, G. Ernst, B. Wolfing, E. Bucher, J. Phys.: Condens. Matter 11, 1697 (1999)

    Google Scholar 

  70. S. Öğüt, K.M. Rabe, Phys. Rev. B 51, 10443 (1995)

    Article  Google Scholar 

  71. Q. Shen, L.M. Zhang, L.D. Chen, T. Goto, T. Hirai, J. Mater. Sci. Lett. 20, 2197 (2001)

    Article  Google Scholar 

  72. Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, C. Uher, Appl. Phys. Lett. 79, 4165 (2001)

    Article  Google Scholar 

  73. S.R. Clup, S.J. Poon, N. Hickman, T.M. Tritt, J. Blumm, Appl. Phys. Lett. 88, 042106 (2006)

    Article  Google Scholar 

  74. T. Graf, J. Barth, C.G.F. Blum, B. Balke, C. Felser, P. Klaer, H.J. Elmers, Phys. Rev. B 82, 194420 (2010)

    Article  Google Scholar 

  75. T. Graf, P. Klaer, J. Barth, B. Balke, H.J. Elmers, C. Felser, Scr. Mater. 63, 1216 (2010)

    Article  Google Scholar 

  76. S. Sakurada, N. Shutoh, J. Alloy. Compd. 389, 204 (2005)

    Article  Google Scholar 

  77. J. Krez, B. Balke, W. Hermes, M. Schwind, C. Felser, arXiv:1502.01828 (2015)

  78. L. Zhao, B.-P. Zhang, W. Liu, H. Zhang, J.-F. Li, J. Alloy. Compd. 467, 91 (2009)

    Article  Google Scholar 

  79. E. Hatzikraniotis, K.T. Zorbas, I. Samaras, Th Kyratsi, K. Paraskevopoulos, J. Electron. Mater. 39, 2112 (2010)

    Article  Google Scholar 

  80. Y. Gelbstein, B. Dado, O. Ben-Yehuda, Y. Sadia, Z. Dashevsky, M.P. Dariel, Chem. Mater. 22, 1054 (2010)

    Article  Google Scholar 

  81. E. Rausch, B. Balke, S. Ouardi, C. Felser, Phys. Chem. Chem. Phys. 16, 25258 (2014)

    Article  Google Scholar 

  82. E. Rausch, S. Ouardi, U. Burkhardt, C. Felser, J.M. Stahlhofen, B. Balke, arXiv:1502.03336 (2015)

Download references

Acknowledgments

This work was financially supported by the thermoHEUSLER Project (Project No. 0327876D) of the German Federal Ministry of Economics and Technology (BMWi) and the TEG 2020 project of the German Federal Ministry of Education and Research (BMBF). Additonal financial support by the Deutsche Forschungsgemeinschaft (projects BA4171/2-2 and FE633/8-1 of the DFG Priority Programm SPP 1386 and project INST247/897-1 FUGG) and Stiftung Innovation Rheinland-Pfalz (No. 961-386261/931) is gratefully acknowledged. The authors thank G.H. Fecher, M. Schwall, E. Rausch, S. Ouardi, T. Graf, J. Barth, S. Beccard, M. Cambaz, J. Schmitt, R. Stinshoff, W. Schnelle, S. Kostmann, M. Eckert, M.P. Schmidt, J.M. Stahlhofen and all the student assistants during the last 5 years for their help with theory and experiments, and for fruitful discussions. Especially, the authors thank C. Felser for all the support during the last ten years. BB thanks the whole team of the thermoHEUSLER project for fruitful discussions and especially the team of the Fraunhofer IPM (Freiburg, Germany) for help with experiments and the verification of experimental results. J. Krez and M. Schwall were recipient of a fellowship of the Graduate School of Excellence “MAterials Science IN MainZ” MAINZ through the Excellence Initiative (DFG/GSC 266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Balke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Krez, J., Balke, B. (2016). Thermoeletric Heusler Compounds. In: Felser, C., Hirohata, A. (eds) Heusler Alloys. Springer Series in Materials Science, vol 222. Springer, Cham. https://doi.org/10.1007/978-3-319-21449-8_10

Download citation

Publish with us

Policies and ethics