Skip to main content

Responsiveness and the Autonomic Control–CNS Two-Way Interaction in Disorders of Consciousness

  • Chapter
Book cover Brain Function and Responsiveness in Disorders of Consciousness

Abstract

Functional neuroimaging has documented stimulus- or condition-related regional brain activation in subjects in VS/UWS or minimally conscious state and suggested retained connectivity in segregated cortical networks. It also provided indications of direct/indirect functional links between the autonomic control and higher brain activities. An integrated model (the central autonomic network) has been contrived to describe the interaction among neuronal structures involved in cognitive, sensory, or affective processes and autonomic regulation. The measures of heart rate variability (HRV) are thought to indirectly reflect these activities and interaction; integrative models equate HRV to autonomic nervous system outputs, with HRV reflecting affective, physiological, “cognitive,” and behavioral elements and homeostatic responses. HRV provides tools for the evaluation of responsiveness in DoC and has proved reliable in physiological research in the absence of conscious behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faith M, Thayer JF (2001) A dynamical systems interpretation of a dimensional model of emotion. Scand J Psychol 42:121–133

    Article  CAS  PubMed  Google Scholar 

  2. Posner J, Russell JA, Peterson BS (2005) The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev Psychopathol 17:715–734

    Article  PubMed Central  PubMed  Google Scholar 

  3. Appelhans BM, Luecken LJ (2006) Heart rate variability as an index of regulated emotional responding. Rev Gen Psychol 10:229–240

    Article  Google Scholar 

  4. Critchley HD, Mathias CJ, Josephs O, O’Doherty J, Zanini S, Dewar B-K, Cipolotti L, Shallice T, Dolan RJ (2003) Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain 126:2139–2152

    Article  PubMed  Google Scholar 

  5. Lane RD, McRae K, Reiman EM, Chen K, Ahern GL, Thayer JF (2009) Neural correlates of heart rate variability during emotion. Neuroimage 44:213–222

    Article  PubMed  Google Scholar 

  6. Mashin VA, Mashina MN (2000) Analysis of the heart rate variability in negative functional states in the course of psychological relaxation sessions. Hum Physiol 26:420–425

    Article  Google Scholar 

  7. Napadow V, Dhond R, Conti G, Makris N, Brown EN, Barbieri R (2008) Brain correlates of autonomic modulation: combining heart rate variability with fMRI. Neuroimage 42:169–177

    Article  PubMed Central  PubMed  Google Scholar 

  8. Riganello F, Dolce G, Sannita W (2012) Heart rate variability and the central autonomic network in the severe disorder of consciousness. J Rehabil Med 44:495–501

    Article  PubMed  Google Scholar 

  9. Esler M (1993) Clinical application of noradrenaline spillover methodology: delineation of regional human sympathetic nervous responses. Pharmacol Toxicol 73:243–253

    Article  CAS  PubMed  Google Scholar 

  10. Wallin BG, Charkoudian N (2007) Sympathetic neural control of integrated cardiovascular function: insights from measurement of human sympathetic nerve activity. Muscle Nerve 36:595–614

    Article  CAS  PubMed  Google Scholar 

  11. Grossman P, Taylor EW (2007) Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol 74:263–285

    Article  PubMed  Google Scholar 

  12. Lehrer PM, Vaschillo E, Vaschillo B, Lu S-E, Eckberg DL, Edelberg R, Shih WJ, Lin Y, Kuusela TA, Tahvanainen KUO, Hamer RM (2003) Heart rate variability biofeedback increases baroreflex gain and peak expiratory flow. Psychosom Med 65:796–805

    Article  PubMed  Google Scholar 

  13. Fujibayashi M, Hamada T, Matsumoto T, Kiyohara N, Tanaka S, Kotani K, Egawa K, Kitagawa Y, Kiso Y, Sakane N, Moritani T (2009) Thermoregulatory sympathetic nervous system activity and diet-induced waist-circumference reduction in obese Japanese women. Am J Hum Biol 21:828–835

    Article  PubMed  Google Scholar 

  14. Kuusela TA, Kaila TJ, Kähönen M (2003) Fine structure of the low-frequency spectra of heart rate and blood pressure. BMC Physiol 3:11

    Article  PubMed Central  PubMed  Google Scholar 

  15. Medford N, Critchley HD (2010) Conjoint activity of anterior insular and anterior cingulate cortex: awareness and response. Brain Struct Funct 214:535–549

    Article  PubMed Central  PubMed  Google Scholar 

  16. van Orshoven NP, Oey PL, van Schelven LJ, Roelofs JMM, Jansen PA, Akkermans LMA (2004) Effect of gastric distension on cardiovascular parameters: gastrovascular reflex is attenuated in the elderly. J Physiol 555:573–583

    Article  PubMed Central  PubMed  Google Scholar 

  17. Aubert AE, Seps B, Beckers F (2003) Heart rate variability in athletes. Sports Med Auckl NZ 33:889–919

    Article  Google Scholar 

  18. Cooke WH, Cox JF, Diedrich AM, Taylor JA, Beightol LA, Ames JE, Hoag JB, Seidel H, Eckberg DL (1998) Controlled breathing protocols probe human autonomic cardiovascular rhythms. Am J Physiol 274:H709–H718

    CAS  PubMed  Google Scholar 

  19. Riganello F, Garbarino S, Sannita WG (2012) Heart rate variability, homeostasis, and brain function: a tutorial and review of application. J Psychophysiol 26:178–203. doi:10.1027/0269-8803/a000080

    Article  Google Scholar 

  20. Kawashima T (2005) The autonomic nervous system of the human heart with special reference to its origin, course, and peripheral distribution. Anat Embryol (Berl) 209:425–438

    Article  Google Scholar 

  21. Spyer KM, Gourine AV (2009) Chemosensory pathways in the brainstem controlling cardiorespiratory activity. Philos Trans R Soc B Biol Sci 364:2603–2610

    Article  Google Scholar 

  22. Shaffer F, Venner J (2013) Heart rate variability anatomy and physiology. Biofeedback 41:13–25

    Article  Google Scholar 

  23. Hainsworth R (1995) The control and physiological importance of heart rate. In: Malik M, Camm AJ (eds) Heart rate variability. Futura Publishing Company, Inc, Armonk

    Google Scholar 

  24. Verkerk AO, Remme CA, Schumacher CA, Scicluna BP, Wolswinkel R, de Jonge B, Bezzina CR, Veldkamp MW (2012) Functional Nav1.8 channels in intracardiac neurons: the link between SCN10A and cardiac electrophysiology. Circ Res 111:333–343

    Article  CAS  PubMed  Google Scholar 

  25. Armour JA (2008) Potential clinical relevance of the “little brain” on the mammalian heart. Exp Physiol 93:165–176

    Article  CAS  PubMed  Google Scholar 

  26. Berntson GG, Sarter M, Cacioppo JT (2003) Ascending visceral regulation of cortical affective information processing. Eur J Neurosci 18:2103–2109

    Article  PubMed  Google Scholar 

  27. Cameron OG (2009) Visceral brain–body information transfer. Neuroimage 47:787–794

    Article  PubMed  Google Scholar 

  28. Armour JA, Kember GC (2004) Cardiac sensory neurons. Basic and clinical neurocardiology, In: Armour JA, Ardell JL, (eds). Oxford University Press, New York. pp. 79–117

    Google Scholar 

  29. Cheng Z, Powley TL, Schwaber JS, Doyle FJ (1997) Vagal afferent innervation of the atria of the rat heart reconstructed with confocal microscopy. J Comp Neurol 381:1–17

    Article  CAS  PubMed  Google Scholar 

  30. Kukanova B, Mravec B (2006) Complex intracardiac nervous system. Bratisl Lek Listy 107:45

    CAS  PubMed  Google Scholar 

  31. Randall DC, Brown DR, McGuirt AS, Thompson GW, Armour JA, Ardell JL (2003) Interactions within the intrinsic cardiac nervous system contribute to chronotropic regulation. Am J Physiol Regul Integr Comp Physiol 285:R1066–R1075

    Article  CAS  PubMed  Google Scholar 

  32. Clerico A, Giannoni A, Vittorini S, Passino C (2011) Thirty years of the heart as an endocrine organ: physiological role and clinical utility of cardiac natriuretic hormones. Am J Physiol Heart Circ Physiol 301:H12–H20

    Article  CAS  PubMed  Google Scholar 

  33. Randall DC, Evans JM, Billman GE, Ordway GA, Knapp CF (1981) Neural, hormonal and intrinsic mechanisms of cardiac control during acute coronary occlusion in the intact dog. J Auton Nerv Syst 3:87–99

    Article  CAS  PubMed  Google Scholar 

  34. Armour JA (1991) Intrinsic cardiac neurons. J Cardiovasc Electrophysiol 2:331–341

    Article  Google Scholar 

  35. McCraty R, Shaffer F (2015) Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Health Med Improv Healthc Outcomes Worldw 4:46–61

    Article  Google Scholar 

  36. Kaufmann T, Vögele C, Sütterlin S, Lukito S, Kübler A (2012) Effects of resting heart rate variability on performance in the P300 brain-computer interface. Int J Psychophysiol 83:336–341

    Article  PubMed  Google Scholar 

  37. Riganello F, Cortese MD, Dolce G, Sannita WG (2013) Visual pursuit response in the severe disorder of consciousness: modulation by the central autonomic system and a predictive model. BMC Neurol 13:164

    Article  PubMed Central  PubMed  Google Scholar 

  38. Schandry R, Montoya P (1996) Event-related brain potentials and the processing of cardiac activity. Biol Psychol 42:75–85

    Article  CAS  PubMed  Google Scholar 

  39. MacKinnon S, Gevirtz R, McCraty R, Brown M (2013) Utilizing heartbeat evoked potentials to identify cardiac regulation of vagal afferents during emotion and resonant breathing. Appl Psychophysiol Biofeedback 38:241–255

    Article  PubMed  Google Scholar 

  40. Park H-D, Correia S, Ducorps A, Tallon-Baudry C (2014) Spontaneous fluctuations in neural responses to heartbeats predict visual detection. Nat Neurosci 17:612–618

    Article  CAS  PubMed  Google Scholar 

  41. Palma J-A, Benarroch EE (2014) Neural control of the heart: recent concepts and clinical correlations. Neurology 83:261–271

    Article  PubMed  Google Scholar 

  42. Taggart P, Boyett MR, Logantha SJRJ, Lambiase PD (2011) Anger, emotion, and arrhythmias: from brain to heart. Front Physiol 2:67

    Article  PubMed Central  PubMed  Google Scholar 

  43. Benarroch EE (1993) The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc 68:988–1001

    Article  CAS  PubMed  Google Scholar 

  44. Benarroch EE (2007) Enteric nervous system: functional organization and neurologic implications. Neurology 69:1953–1957

    Article  PubMed  Google Scholar 

  45. Benarroch EE (2007) The autonomic nervous system: basic anatomy and physiology. Contin Lifelong Learn Neurol 13:13–32

    Article  Google Scholar 

  46. Saper CB (2002) The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci 25:433–469

    Article  CAS  PubMed  Google Scholar 

  47. Bandler R, Keay KA, Floyd N, Price J (2000) Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. Brain Res Bull 53:95–104

    Article  CAS  PubMed  Google Scholar 

  48. Barbas H, Saha S, Rempel-Clower N, Ghashghaei T (2003) Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression. BMC Neurosci 4:25

    Article  PubMed Central  PubMed  Google Scholar 

  49. Hsu DT, Price JL (2007) Midline and intralaminar thalamic connections with the orbital and medial prefrontal networks in macaque monkeys. J Comp Neurol 504:89–111

    Article  PubMed  Google Scholar 

  50. Thayer JF, Lane RD (2000) A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord 61:201–216

    Article  CAS  PubMed  Google Scholar 

  51. Thayer JF, Lane RD (2009) Claude Bernard and the heart–brain connection: further elaboration of a model of neurovisceral integration. Neurosci Biobehav Rev 33:81–88

    Article  PubMed  Google Scholar 

  52. Friedman BH (2007) An autonomic flexibility–neurovisceral integration model of anxiety and cardiac vagal tone. Biol Psychol 74:185–199

    Article  PubMed  Google Scholar 

  53. Gutiérrez J, Machado C, Estévez M, Olivares A, Hernández H, Perez J, Beltrán C, Leisman G (2010) Heart rate variability changes induced by auditory stimulation in persistent vegetative state. Int J Disabil Hum Dev 9:357–362

    Article  Google Scholar 

  54. Riganello F, Candelieri A, Quintieri M, Conforti D, Dolce G (2010) Heart rate variability: an index of brain processing in vegetative state? An artificial intelligence, data mining study. Clin Neurophysiol 121:2024–2034

    Article  CAS  PubMed  Google Scholar 

  55. Riganello F, Candelieri A, Quintieri M, Dolce G (2010) Heart rate variability, emotions, and music. J Psychophysiol 24:112–119

    Article  Google Scholar 

  56. Riganello F, Quintieri M, Candelieri A, Conforti D, Dolce G (2008) Heart rate response to music: an artificial intelligence study on healthy and traumatic brain-injured subjects. J Psychophysiol 22:166–174

    Article  Google Scholar 

  57. Lanfranchi PA, Somers VK (2002) Arterial baroreflex function and cardiovascular variability: interactions and implications. Am J Physiol Regul Integr Comp Physiol 283:R815–R826

    Article  PubMed  Google Scholar 

  58. Lombardi F (2002) Clinical implications of present physiological understanding of HRV components. Card Electrophysiol Rev 6:245–249

    Article  PubMed  Google Scholar 

  59. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  60. Frazier TW, Strauss ME, Steinhauer SR (2004) Respiratory sinus arrhythmia as an index of emotional response in young adults. Psychophysiology 41:75–83

    Article  PubMed  Google Scholar 

  61. Ge D, Srinivasan N, Krishnan SM (2002) Cardiac arrhythmia classification using autoregressive modeling. Biomed Eng Online 1:5

    Article  PubMed Central  PubMed  Google Scholar 

  62. Kleiger RE, Stein PK, Bigger JT (2005) Heart rate variability: measurement and clinical utility. Ann Noninvasive Electrocardiol 10:88–101

    Article  PubMed  Google Scholar 

  63. Fojt O, Holcik J (1998) Applying nonlinear dynamics to ECG signal processing. IEEE Eng Med Biol Mag 17:96–101

    Article  CAS  PubMed  Google Scholar 

  64. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278:H2039–H2049

    CAS  PubMed  Google Scholar 

  65. Su C-F, Kuo TB, Kuo J-S, Lai H-Y, Chen HI (2005) Sympathetic and parasympathetic activities evaluated by heart-rate variability in head injury of various severities. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 116:1273–1279

    Article  Google Scholar 

  66. Turkstra LS (1995) Electrodermal response and outcome from severe brain injury. Brain Inj 9:61–80

    Article  CAS  PubMed  Google Scholar 

  67. Wijnen VJM, Heutink M, van Boxtel GJM, Eilander HJ, de Gelder B (2006) Autonomic reactivity to sensory stimulation is related to consciousness level after severe traumatic brain injury. Clin Neurophysiol 117:1794–1807

    Article  PubMed  Google Scholar 

  68. Baguley IJ, Nott MT, Slewa-Younan S, Heriseanu RE, Perkes IE (2009) Diagnosing dysautonomia after acute traumatic brain injury: evidence for overresponsiveness to afferent stimuli. Arch Phys Med Rehabil 90:580–586

    Article  PubMed  Google Scholar 

  69. O’Kelly J, James L, Palaniappan R, Taborin J, Fachner J, Magee WL (2013) Neurophysiological and behavioral responses to music therapy in vegetative and minimally conscious states. Front Hum Neurosci 7:884

    PubMed Central  PubMed  Google Scholar 

  70. Okumura Y, Asano Y, Takenaka S, Fukuyama S, Yonezawa S, Kasuya Y, Shinoda J (2014) Brain activation by music in patients in a vegetative or minimally conscious state following diffuse brain injury. Brain Inj 28:944–950

    Article  PubMed  Google Scholar 

  71. Lee Y-C, Lei C-Y, Shih Y-S, Zhang W-C, Wang H-M, Tseng C-L, Hou MC, Chiang H-Y, Huang S-C (2011) HRV response of vegetative state patient with music therapy. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Conf 2011:1701–1704

    Google Scholar 

  72. Dolce G, Riganello F, Quintieri M, Candelieri A, Conforti D (2008) Personal interaction in the vegetative state: a data-mining study. J Psychophysiol 22:150–156

    Article  Google Scholar 

  73. Machado C, Korein J, Aubert E, Bosch J, Alvarez MA, Rodríguez R, Valdés P, Portela L, García M, Pérez N, Chinchilla M, Machado Y, Machado Y (2007) Recognizing a mother’s voice in the persistent vegetative state. Clin EEG Neurosci 38:124–126

    Article  CAS  PubMed  Google Scholar 

  74. Celesia GG, Sannita WG (2013) Can patients in vegetative state experience pain and have conscious awareness? Neurology 80:328–329

    Article  PubMed  Google Scholar 

  75. Bosco A, Lancioni GE, Belardinelli MO, Singh NN, O’Reilly MF, Sigafoos J (2010) Vegetative state: efforts to curb misdiagnosis. Cogn Process 11:87–90

    Article  PubMed  Google Scholar 

  76. Candelieri A, Cortese MD, Dolce G, Riganello F, Sannita WG (2011) Visual pursuit: within-day variability in the severe disorder of consciousness. J Neurotrauma 28:2013–2017

    Article  PubMed  Google Scholar 

  77. Cortese MD, Riganello F, Arcuri F, Pugliese ME, Lucca LF, Dolce G, Sannita WG (2015) Coma recovery scale-R: variability in the disorder of consciousness. BMC Neurol (in press)

    Google Scholar 

  78. Andrews K, Murphy L, Munday R, Littlewood C (1996) Misdiagnosis of the vegetative state: retrospective study in a rehabilitation unit. BMJ 313:13–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Schnakers C, Vanhaudenhuyse A, Giacino J, Ventura M, Boly M, Majerus S, Moonen G, Laureys S (2009) Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC Neurol 9:35

    Article  PubMed Central  PubMed  Google Scholar 

  80. Sannita WG (2006) Individual variability, end-point effects and possible biases in electrophysiological research. Clin Neurophysiol 117:2569–2583

    Article  CAS  PubMed  Google Scholar 

  81. Riganello F, Cortese MD, Dolce G, Lucca LF, Sannita WG (2015) The autonomic system functional state predicts responsiveness in DOC. J Neurotrauma 32(14): 1071-1077

    Google Scholar 

  82. Monti MM, Laureys S, Owen AM (2010) The vegetative state. BMJ 341:c3765

    Article  PubMed  Google Scholar 

  83. Gibson RM, Fernández-Espejo D, Gonzalez-Lara LE, Kwan BY, Lee DH, Owen AM, Cruse D (2014) Multiple tasks and neuroimaging modalities increase the likelihood of detecting covert awareness in patients with disorders of consciousness. Front Hum Neurosci 8:950

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Riganello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Riganello, F. (2016). Responsiveness and the Autonomic Control–CNS Two-Way Interaction in Disorders of Consciousness. In: Monti, M., Sannita, W. (eds) Brain Function and Responsiveness in Disorders of Consciousness. Springer, Cham. https://doi.org/10.1007/978-3-319-21425-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21425-2_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21424-5

  • Online ISBN: 978-3-319-21425-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics