Skip to main content

The Persistent Vegetative State: Evidence That the Lower Brain Survives Because Its Neurons Intrinsically Resist Ischemia

  • Chapter
Brain Function and Responsiveness in Disorders of Consciousness

Abstract

Global ischemia caused by heart attack, pulmonary failure, near-drowning or traumatic brain injury often damages the higher brain but not the brainstem, leading to a ‘persistent vegetative state’ where the patient is awake but not aware. Approximately 30,000 US patients are held captive in this condition but not a single research study has addressed how the lower brain is preferentially protected in these people. In the higher brain, ischemia elicits a profound anoxic depolarization (AD) causing neuronal dysfunction and vasoconstriction within minutes. Might brainstem nuclei generate less damaging AD and so be more resilient? Here we compared neuronal resistance to acute injury induced by simulated ischemia in ‘higher’ brain (neocortex, hippocampus, striatum, thalamus and cerebellar cortex) versus ‘lower’ brain (hypothalamus and brainstem) in live slices from rat and mouse. Light transmittance (LT) imaging in response to 10 min of oxygen/glucose deprivation (OGD) revealed immediate and acutely damaging AD propagating through gray matter of higher regions. In adjacent lower brain nuclei, OGD-evoked AD caused little tissue injury. Whole-cell patch recordings from higher neurons under OGD revealed an immediate and irreversible loss of membrane potential (strong AD) that did not recover. In contrast lower neurons only slowly depolarized (weak AD) and then repolarized post-OGD. Two-photon microscopy confirmed non-recoverable swelling of cortical pyramidal neurons during OGD, while lower neurons appeared uninjured. All of the above responses were mimicked by bath exposure to 100 μM ouabain which inhibits the Na+/K+ pump or to 1–10 nM palytoxin which converts the pump into an open cationic channel. Our working hypothesis is that the Na+/K+ pump isoforms expressed in lower brain neurons confer resilience during ischemic stress and that higher brain ‘shutdown’ has evolutionary advantages.

Our studies show that, independent of blood supply, the Na+/K+ pump of higher neurons fails quickly and extensively during ischemia compared to naturally resilient hypothalamic and brainstem neurons. The selective survival of lower brain regions in patients who endure global ischemia will support a persistent vegetative state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Multi-Society Task Force on PVS (1994) Medical aspects of the persistent vegetative state (1). N Engl J Med 330(21):1499–1508. doi:10.1056/NEJM199405263302107

    Article  Google Scholar 

  2. Multi-Society Task Force on PVS (1994) Medical aspects of the persistent vegetative state (2). N Engl J Med 330(22):1572–1579. doi:10.1056/NEJM199406023302206

    Article  Google Scholar 

  3. Kinney HC, Samuels MA (1994) Neuropathology of the persistent vegetative state. A review. J Neuropathol Exp Neurol 53(6):548–558

    Article  CAS  PubMed  Google Scholar 

  4. Adams JH, Graham DI, Jennett B (2000) The neuropathology of the vegetative state after an acute brain insult. Brain 123(Pt 7):1327–1338

    Article  PubMed  Google Scholar 

  5. Young GB (2009) Neurological prognosis after cardiac arrest. N Engl J Med 361:605–611

    Article  CAS  PubMed  Google Scholar 

  6. Falini A, Barkovich AJ, Calabrese G, Origgi D, Triulzi F, Scotti G (1998) Progressive brain failure after diffuse hypoxic ischemic brain injury: a serial MR and proton MR spectroscopic study. AJNR Am J Neuroradiol 19(4):648–652

    CAS  PubMed  Google Scholar 

  7. Higuchi T, Graham SH, Fernandez EJ et al (1997) Effects of severe global ischemia on N-acetylaspartate and other metabolites in the rat brain. Magn Reson Med 37(6):851–857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Luigetti M, Goldsberry GT, Cianfoni A (2012) Brain MRI in global hypoxia-ischemia: a map of selective vulnerability. Acta Neurol Belg 112(1):105–107. doi:10.1007/s13760-012-0007-3

    Article  PubMed  Google Scholar 

  9. Laureys S, Owen AM, Schiff ND (2004) Brain function in coma, vegetative state, and related disorders. Lancet Neurol 3(9):537–546. doi:10.1016/S1474-4422(04)00852-X

    Article  PubMed  Google Scholar 

  10. Schiff ND, Ribary U, Moreno DR et al (2002) Residual cerebral activity and behavioural fragments can remain in the persistently vegetative brain. Brain 125(Pt 6):1210–1234

    Article  PubMed  Google Scholar 

  11. Bures J, Buresova O (1981) Cerebral [K+]e increase as an index of the differential susceptibility of brain structures to terminal anoxia and electroconvulsive shock. J Neurobiol 12(3):211–220. doi:10.1002/neu.480120303

    Article  CAS  PubMed  Google Scholar 

  12. Wytrzes LM, Chatrian GE, Shaw CM, Wirch AL (1989) Acute failure of forebrain with sparing of brain-stem function. electroencephalographic, multimodality evoked potential, and pathologic findings. Arch Neurol 46(1):93–97

    Article  CAS  PubMed  Google Scholar 

  13. Centonze D, Marfia GA, Pisani A et al (2001) Ionic mechanisms underlying differential vulnerability to ischemia in striatal neurons. Prog Neurobiol 63(6):687–696

    Article  CAS  PubMed  Google Scholar 

  14. Longstreth WT (2008) Neurological complications of cardiac arrest. In: Aminoff MJ (ed) Neurology and general medicine, 4th edn. Elsevier, Philadelphia, p 163

    Chapter  Google Scholar 

  15. Jennett B (2005) Thirty years of the vegetative state: clinical, ethical and legal problems. Prog Brain Res 150:537–543. doi:10.1016/S0079-6123(05)50037-2

    Article  PubMed  Google Scholar 

  16. Beaumont JG, Kenealy PM (2005) Incidence and prevalence of the vegetative and minimally conscious states. Neuropsychol Rehabil 15(3–4):184–189. doi:10.1080/09602010443000489

    Article  PubMed  Google Scholar 

  17. Murphy TH, Li P, Betts K, Liu R (2008) Two-photon imaging of stroke onset in vivo reveals that NMDA-receptor independent ischemic depolarization is the major cause of rapid reversible damage to dendrites and spines. J Neurosci 28(7):1756–1772. doi:10.1523/JNEUROSCI.5128-07.2008

    Article  CAS  PubMed  Google Scholar 

  18. Farkas E, Bari F, Obrenovitch TP (2010) Multi-modal imaging of anoxic depolarization and hemodynamic changes induced by cardiac arrest in the rat cerebral cortex. Neuroimage 51(2):734–742. doi:10.1016/j. neuroimage. 2010.02.055

    Article  PubMed  Google Scholar 

  19. Dreier JP (2011) The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med 17(4):439–447. doi:10.1038/nm.2333

    Article  CAS  PubMed  Google Scholar 

  20. Dijkhuizen RM, Beekwilder JP, van der Worp HB, Berkelbach van der Sprenkel JW, Tulleken KA, Nicolay K (1999) Correlation between tissue depolarizations and damage in focal ischemic rat brain. Brain Res 840(1–2):194–205

    Article  CAS  PubMed  Google Scholar 

  21. Kaminogo M, Suyama K, Ichikura A, Onizuka M, Shibata S (1998) Anoxic depolarization determines ischemic brain injury. Neurol Res 20(4):343–348

    CAS  PubMed  Google Scholar 

  22. Jarvis CR, Anderson TR, Andrew RD (2001) Anoxic depolarization mediates acute damage independent of glutamate in neocortical brain slices. Cereb Cortex 11(3):249–259

    Article  CAS  PubMed  Google Scholar 

  23. Anderson TR, Jarvis CR, Biedermann AJ, Molnar C, Andrew RD (2005) Blocking the anoxic depolarization protects without functional compromise following simulated stroke in cortical brain slices. J Neurophysiol 93(2):963–979. doi:10.1152/jn.00654.2004

    Article  CAS  PubMed  Google Scholar 

  24. Tanaka E, Yamamoto S, Kudo Y, Mihara S, Higashi H (1997) Mechanisms underlying the rapid depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro. J Neurophysiol 78(2):891–902

    CAS  PubMed  Google Scholar 

  25. Tanaka E, Yamamoto S, Inokuchi H, Isagai T, Higashi H (1999) Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons. J Neurophysiol 81(4):1872–1880

    CAS  PubMed  Google Scholar 

  26. Senatorov VV, Hu B (1997) Differential na(+)-K(+)-ATPase activity in rat lemniscal and non-lemniscal auditory thalami. J Physiol 502(Pt 2):387–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Brisson CD, Lukewich MK, Andrew RD (2013) A distinct boundary between the higher brain’s susceptibility to ischemia and the lower brain’s resistance. PLoS One 8(11), e79589

    Article  PubMed Central  PubMed  Google Scholar 

  28. Hamann M, Rossi DJ, Mohr C, Andrade AL, Attwell D (2005) The electrical response of cerebellar purkinje neurons to simulated ischaemia. Brain 128(Pt 10):2408–2420. doi:10.1093/brain/awh619

    Article  PubMed  Google Scholar 

  29. Brisson CD, Andrew RD (2012) A neuronal population in hypothalamus that dramatically resists acute ischemic injury compared to neocortex. J Neurophysiol 108(2):419–430. doi:10.1152/jn.00090.2012

    Article  CAS  PubMed  Google Scholar 

  30. Funke F, Kron M, Dutschmann M, Muller M (2009) Infant brain stem is prone to the generation of spreading depression during severe hypoxia. J Neurophysiol 10(5):2395–2410. doi:10.1152/jn.91260.2008

    Google Scholar 

  31. Karunasinghe RN, Lipski J (2013) Oxygen and glucose deprivation (OGD)-induced spreading depression in the substantia nigra. Brain Res 1527:209–221. doi:10.1016/j.brainres.2013.06.016

    Article  CAS  PubMed  Google Scholar 

  32. Richter F, Bauer R, Ebersberger A, Lehmenkuhler A, Schaible HG (2012) Enhanced neuronal excitability in adult rat brainstem causes widespread repetitive brainstem depolarizations with cardiovascular consequences. J Cereb Blood Flow Metab 32(8):1535–1545. doi:10.1038/jcbfm.2012.40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Brisson CD, Lukewich MK, Andrew RD (2013) A distinct boundary between the higher brain’s susceptibility to ischemia and the lower brain’s resistance. PLoS One 8(11):e79589. doi:10.1371/journal.pone.0079589

    Article  PubMed Central  PubMed  Google Scholar 

  34. Brisson CD, Hsieh YT, Kim D, Jin AY, Andrew RD (2014) Brainstem neurons survive the identical ischemic stress that kills higher neurons: Insight to the persistent vegetative state. PLoS One 9(5):e96585. doi:10.1371/journal.pone.0096585

    Article  PubMed Central  PubMed  Google Scholar 

  35. Memezawa H, Smith ML, Siesjo BK (1992) Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke 23(4):552–559

    Article  CAS  PubMed  Google Scholar 

  36. Koroleva VI, Vinogradova LV (2000) Ischemic and hypoxic depolarization in the rat neocortex. Zh Vyssh Nerv Deiat Im I P Pavlova 50(4):612–623

    CAS  PubMed  Google Scholar 

  37. Andrew RD, Labron MW, Boehnke SE, Carnduff L, Kirov SA (2007) Physiological evidence that pyramidal neurons lack functional water channels. Cereb Cortex 17(4):787–802. doi:10.1093/cercor/bhk032

    Article  PubMed  Google Scholar 

  38. Sieber FE, Palmon SC, Traystman RJ, Martin LJ (1995) Global incomplete cerebral ischemia produces predominantly cortical neuronal injury. Stroke 26(11):2091–2095, discussion 2096

    Article  CAS  PubMed  Google Scholar 

  39. Martin RL (1999) Block of rapid depolarization induced by in vitro energy depletion of rat dorsal vagal motoneurones. J Physiol 519(Pt 1):131–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Risher WC, Andrew RD, Kirov SA (2009) Real-time passive volume responses of astrocytes to acute osmotic and ischemic stress in cortical slices and in vivo revealed by two-photon microscopy. Glia 57(2):207–221. doi:10.1002/glia.20747

    Article  PubMed Central  PubMed  Google Scholar 

  41. Feng G, Mellor RH, Bernstein M et al (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28(1):41–51

    Article  CAS  PubMed  Google Scholar 

  42. Basarsky TA, Duffy SN, Andrew RD, MacVicar BA (1998) Imaging spreading depression and associated intracellular calcium waves in brain slices. J Neurosci 18(18):7189–7199

    CAS  PubMed  Google Scholar 

  43. Joshi I, Andrew RD (2001) Imaging anoxic depolarization during ischemia-like conditions in the mouse hemi-brain slice. J Neurophysiol 85(1):414–424

    CAS  PubMed  Google Scholar 

  44. Obeidat AS, Jarvis CR, Andrew RD (2000) Glutamate does not mediate acute neuronal damage after spreading depression induced by O2/glucose deprivation in the hippocampal slice. J Cereb Blood Flow Metab 20(2):412–422. doi:10.1097/00004647-200002000-00024

    Article  CAS  PubMed  Google Scholar 

  45. Andrew RD, Hsieh Y-T, Brisson CD (2012) Projection neurons in brainstem and hypothalamus intrinsically resist acute stroke injury while projection neurons in cortex, striatum and thalamus die. Soc Neurosci Abstracts 2012

    Google Scholar 

  46. White SH, Brisson CD, Andrew RD (2012) Examining protection from anoxic depolarization by the drugs dibucaine and carbetapentane using whole cell recording from CA1 neurons. J Neurophysiol 107(8):2083–2095. doi:10.1152/jn.00701.2011

    Article  CAS  PubMed  Google Scholar 

  47. Moriguchi S, Watanabe S, Kita H, Nakanishi H (2002) Enhancement of N-methyl- D-aspartate receptor-mediated excitatory postsynaptic potentials in the neostriatum after methamphetamine sensitization. an in vitro slice study. Exp Brain Res 144(2):238–246. doi:10.1007/s00221-002-1039-3

    Article  CAS  PubMed  Google Scholar 

  48. Yoshida S, Oka H (1998) Membrane properties of dissociated trigeminal mesencephalic neurons of the adult rat. Neurosci Res 30(3):227–234

    Article  CAS  PubMed  Google Scholar 

  49. Cowan AI, Martin RL (1992) Ionic basis of membrane potential changes induced by anoxia in rat dorsal vagal motoneurones. J Physiol 455:89–109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Young GB, Owen AM, Estraneo A, Moretta P, Trojano L (2013) Predictors of recovery of responsiveness in prolonged anoxic vegetative state. Neurology 81(14):1274–1275. doi:10.1212/WNL.0b013e3182a7ae28

    Article  PubMed  Google Scholar 

  51. Kawai K, Nitecka L, Ruetzler CA et al (1992) Global cerebral ischemia associated with cardiac arrest in the rat: I. dynamics of early neuronal changes. J Cereb Blood Flow Metab 12(2):238–249. doi:10.1038/jcbfm.1992.34

    Article  CAS  PubMed  Google Scholar 

  52. Gottron MA, Lo DC (2009) The Na+/K+-ATPase as a drug target for ischemic stroke. In: Annunziato L (ed) New strategies in stroke intervention. Humana Press, p 129. doi:10.1007/978-1-60761-280-3_8

    Google Scholar 

  53. Liu L, Gable ME, Garlid KD, Askari A (2007) Interactions of K + ATP channel blockers with na+/K + −ATPase. Mol Cell Biochem 306(1–2):231–237. doi:10.1007/s11010-007-9574-7

    Article  CAS  PubMed  Google Scholar 

  54. Lee SY, Lee CO (2005) Inhibition of na + −K+ pump and L-type Ca2+ channel by glibenclamide in guinea pig ventricular myocytes. J Pharmacol Exp Ther 312(1):61–68. doi:10.1124/jpet.104.074369

    Article  CAS  PubMed  Google Scholar 

  55. Yang JJ, Chou YC, Lin MT, Chiu TH (1997) Hypoxia-induced differential electrophysiological changes in rat locus coeruleus neurons. Life Sci 61(18):1763–1773

    Article  CAS  PubMed  Google Scholar 

  56. Balestrino M, Young J, Aitken P (1999) Block of (na+, K+)ATPase with ouabain induces spreading depression-like depolarization in hippocampal slices. Brain Res 838(1–2):37–44

    Article  CAS  PubMed  Google Scholar 

  57. Dobretsov M, Stimers JR (2005) Neuronal function and alpha3 isoform of the na/K-ATPase. Front Biosci 10:2373–2396

    Article  CAS  PubMed  Google Scholar 

  58. Blanco G (2005) Na, K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. Semin Nephrol 25(5):292–303. doi:10.1016/j.semnephrol.2005.03.004

    Article  CAS  PubMed  Google Scholar 

  59. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL et al (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489(7416):391–399. doi:10.1038/nature11405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Nohda K, Nakatsuka T, Takeda D et al (2007) Selective vulnerability to ischemia in the rat spinal cord: a comparison between ventral and dorsal horn neurons. Spine (Phila Pa 1976) 32(10):1060–1066. doi:10.1097/01.brs.0000261560.53428.90

    Article  Google Scholar 

  61. Edwards IJ, Bruce G, Lawrenson C et al (2013) Na+/K+ ATPase alpha1 and alpha3 isoforms are differentially expressed in alpha- and gamma-motoneurons. J Neurosci 33(24):9913–9919. doi:10.1523/JNEUROSCI.5584-12.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Richards KS, Bommert K, Szabo G, Miles R (2007) Differential expression of Na+/K + −ATPase alpha-subunits in mouse hippocampal interneurones and pyramidal cells. J Physiol 585(Pt 2):491–505. doi:10.1113/jphysiol.2007.144733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Andrew RD, Brisson CD (2011) Trauma trumps stroke: why is our higher brain inept at dealing with blocked blood flow? Vasospasm 2011: The 11th International Conference on Neurovascular Events after Subarachnoid Hemorrhage, Cincinatti, pp 311–312

    Google Scholar 

  64. Czeh G, Aitken PG, Somjen GG (1992) Whole-cell membrane current and membrane resistance during hypoxic spreading depression. Neuroreport 3(2):197–200

    Article  CAS  PubMed  Google Scholar 

  65. Muller M, Somjen GG (2000) Na(+) dependence and the role of glutamate receptors and na(+) channels in ion fluxes during hypoxia of rat hippocampal slices. J Neurophysiol 84(4):1869–1880

    CAS  PubMed  Google Scholar 

  66. Madry C, Haglerod C, Attwell D (2010) The role of pannexin hemichannels in the anoxic depolarization of hippocampal pyramidal cells. Brain 133(Pt 12):3755–3763. doi:10.1093/brain/awq284

    Article  PubMed Central  PubMed  Google Scholar 

  67. Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403(6767):316–321. doi:10.1038/35002090

    Article  CAS  PubMed  Google Scholar 

  68. Muller M, Somjen GG (1998) Inhibition of major cationic inward currents prevents spreading depression-like hypoxic depolarization in rat hippocampal tissue slices. Brain Res 812(1–2):1–13

    Article  CAS  PubMed  Google Scholar 

  69. Thompson RJ, Zhou N, MacVicar BA (2006) Ischemia opens neuronal gap junction hemichannels. Science 312(5775):924–927. doi:10.1126/science.1126241

    Article  CAS  PubMed  Google Scholar 

  70. Bargiotas P, Krenz A, Hormuzdi SG et al (2011) Pannexins in ischemia-induced neurodegeneration. Proc Natl Acad Sci U S A 108(51):20772–20777. doi:10.1073/pnas.1018262108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Karatas H, Erdener SE, Gursoy-Ozdemir Y et al (2013) Spreading depression triggers headache by activating neuronal Panx1 channels. Science 339(6123):1092–1095. doi:10.1126/science.1231897

    Article  CAS  PubMed  Google Scholar 

  72. Andrew RD, Britton R, McQueen SA, Kim D, Jin AY (2013) Could the failing na+/K+ pump convert to a channel during stroke? Soc Neurosci Abstract 337 07/T10

    Google Scholar 

  73. Artigas P, Gadsby DC (2004) Large diameter of palytoxin-induced na/K pump channels and modulation of palytoxin interaction by na/K pump ligands. J Gen Physiol 123(4):357–376. doi:10.1085/jgp.200308964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Rossini GP, Bigiani A (2011) Palytoxin action on the na(+), K(+)-ATPase and the disruption of ion equilibria in biological systems. Toxicon 57(3):429–439. doi:10.1016/j. toxicon. 2010.09.011

    Article  CAS  PubMed  Google Scholar 

  75. Gadsby DC, Takeuchi A, Artigas P, Reyes N (2009) Review. peering into an ATPase ion pump with single-channel recordings. Philos Trans R Soc Lond B Biol Sci 364(1514):229–238. doi:10.1098/rstb.2008.0243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Dzhala V, Khalilov I, Ben-Ari Y, Khazipov R (2001) Neuronal mechanisms of the anoxia-induced network oscillations in the rat hippocampus in vitro. J Physiol 536(Pt 2):521–531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Neuronal recordings were obtained by Dr. C. Devin Brisson as part of his doctoral thesis carried out in RDA’s laboratory. Thanks to Dr. Susan Boehnke for statistical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. David Andrew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Andrew, R.D. (2016). The Persistent Vegetative State: Evidence That the Lower Brain Survives Because Its Neurons Intrinsically Resist Ischemia. In: Monti, M., Sannita, W. (eds) Brain Function and Responsiveness in Disorders of Consciousness. Springer, Cham. https://doi.org/10.1007/978-3-319-21425-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21425-2_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21424-5

  • Online ISBN: 978-3-319-21425-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics