Skip to main content

Simulating the Effect of Cell Migration Speed on Wound Healing Using a 3D Cellular Automata Model for Multicellular Tissue Growth

  • Conference paper
  • First Online:
Computational Science and Its Applications -- ICCSA 2015 (ICCSA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9156))

Included in the following conference series:

  • 2153 Accesses

Abstract

We present the simulation of the effect of cell migration speed on wound healing using a three-dimensional computational model for multicellular tissue growth. The computational model uses a discrete approach based on cellular automata to simulate wound-healing times and tissue growth rates of multiple populations of proliferating and migrating cells. Each population of cells has its own division, motion, collision, and aggregation characteristics resulting in a number of useful system parameters that allow us to investigate their emergent effects. Our sequential performance results point to the need of porting the model to modern high performance machines to harness the computational power available in multicore and GPU-based computers. Discrete systems of this kind can be a valuable approach for studying many complex systems, including biological ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Safferling, K., et al.: Wound Healing Revised: A Novel Reepithelialization Mechanism Revealed by In Vitro and In Silico Models. J. Cell Biol. 203(4), 691–709 (2013)

    Article  Google Scholar 

  2. Palsson, B.O., Bhatia, S.N.: Tissue Engineering. Pearson Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  3. Soll, D., Wessels, D.: Motion Analysis of Living Cells: Techniques in Modern Biomedical Microscopy. Wiley-Liss, New York (1998)

    Google Scholar 

  4. Langer, R., Vacanti, J.P.: Tissue Engineering. Science 260, 920–926 (1993)

    Article  Google Scholar 

  5. Ben Youssef, B.: A Visualization Tool of 3-D Time-Varying Data for the Simulation of Tissue Growth. Multimed. Tools Appl. 73(3), 1795–1817 (2014)

    Google Scholar 

  6. Tchuente, M.: Computation on Automata Networks. In: Soulie, F.G., Robert, Y., Tchuente, M. (eds.) Automata Networks in Computer Science: Theory and Applications, pp. 101–129. Princeton University Press, Princeton (1987)

    Google Scholar 

  7. Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation: Characterization, Applications, and Analysis. Birkhauser, Boston (2005)

    Google Scholar 

  8. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  9. Chang, L., Gilbert, E.S., Eliashberg, N., Keasling, J.D.: A Three-Dimensional, Stochastic Simulation of Biofilm Growth and Transport-Related Factors that Affect Structure. Micro-biology 149(10), 2859–2871 (2003)

    Article  Google Scholar 

  10. Kansal, A.R., Torquato, S., Harsh IV, G.R., Chiocca, E.A., Deisboeck, T.S.: Simulated Brain Tumor Growth Dynamics Using a Three-Dimensional Cellular Automaton. J. Theor. Biol. 203(4), 367–382 (2000)

    Article  Google Scholar 

  11. Cickovski, T.M., et al.: A Framework for Three-Dimensional Simulation of Morphogenesis. IEEE ACM T. Comput. Biol. Bioinformatics 2(4), 273–288 (2005)

    Article  Google Scholar 

  12. Schaller, G., Meyer-Hermann, M.: Multicellular Tumor Spheroid in an Off-Lattice Voronoi-Delaunay Cell Model. Phys. Rev. E 71(5 pt. 1), 051910 (2005)

    Article  MathSciNet  Google Scholar 

  13. Beyer, T., Meyer-Hermann, M.: Delauny Object Dynamics for Tissues Involving Highly Motile Cells. In: Chauviere, A., Preziosi, L., Verdier, C. (eds.) Cell Mechanics: From Single Scale-Based Models to Multiscale Modeling, pp. 417–442. CRC Press (2010)

    Google Scholar 

  14. Fu, Y.X., Chaplin, D.D.: Development and Maturation of Secondary Lymphoid Tissues. Annu. Rev. Immunol. 17, 399–433 (1999)

    Article  Google Scholar 

  15. Beyer, T., Schaller, G., Deutsch, A., Meyer-Hermann, M.: Parallel Dynamic and Kinetic Regular Triangulation in Three Dimensions. Comput. Phys. Commun. 172(2), 86–108 (2005)

    Article  Google Scholar 

  16. Cordelia, Z., Mi, Q., An, G., Vodovotz, Y.: Computational Modeling of Inflammation and Wound Healing. Adv. Wound Care 2(9), 527–537 (2013)

    Article  Google Scholar 

  17. Bratley, P., Fox, B.L., Schrage, L.E.: A Guide to Simulation, 2nd edn. Springer, New York (1987)

    Google Scholar 

  18. Majno, G., Joris, I.: Cells, Tissues, and Disease: Principles of General Pathology. Oxford University Press, New York (2004)

    Google Scholar 

  19. Ben Youssef, B.: A Parallel Cellular Automata Algorithm for the Deterministic Simulation of 3-D Multicellular Tissue Growth. Cluster Comput. (2015). doi:10.1007/s10586-015-0455-7

  20. An, G., Mi, Q., Dutta-Moscato, J., Vodovotz, Y.: Agent-Based Models in Translational Systems Biology. Wiley Interdiscip. Rev. 1(2), 159–171 (2009)

    Google Scholar 

  21. Azuaje, F.: Computational Discrete Models of Tissue Growth and Regeneration. Brief. Bioinforma. 12(1), 64–77 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belgacem Ben Youssef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ben Youssef, B. (2015). Simulating the Effect of Cell Migration Speed on Wound Healing Using a 3D Cellular Automata Model for Multicellular Tissue Growth. In: Gervasi, O., et al. Computational Science and Its Applications -- ICCSA 2015. ICCSA 2015. Lecture Notes in Computer Science(), vol 9156. Springer, Cham. https://doi.org/10.1007/978-3-319-21407-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21407-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21406-1

  • Online ISBN: 978-3-319-21407-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics