Skip to main content

Bioengineered Tissue TMJ TJR

  • Chapter
  • 1652 Accesses

Abstract

One of the major obstacles that have plagued the reconstruction of the temporomandibular joint (TMJ) has been the adverse reactions seen with the use of alloplastic, non-biologic materials. These inert and passive materials, by themselves, do not respond to normal biochemical or biomechanical signals, which are present in situ within the TMJ. The patient, because of the biologic inertness of these materials, must adapt to the material or mechanical device that has been used. This may result in related complications or compromised functional outcome [1]. The main advantage of a tissue engineered TMJ, in contrast, will allow the patient to biologically remodel, overtime, the implanted prosthesis to their own anatomy during functional movements of the jaw per Wolff’s Law, i.e. form and function are related, thus minimizing compromise of function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rubin JP, Yaremchuk MJ. Complications and toxicities of implantable biomaterials used in facial reconstructive and aesthetic surgery: a comprehensive review of the literature. Plast Reconstr Surg. 1997;100:1336.

    Article  CAS  PubMed  Google Scholar 

  2. Mercuri LG. Alloplastic temporomandibular joint reconstruction. Oral Surg Oral Med Oral Pathol. 1998;85:631.

    Article  CAS  Google Scholar 

  3. Van Loon JP, De Bont LGM, Boering G. Evaluation of temporomandibular joint prosthesis: Review of the literature from 1946 to 1994 and implications for future prosthesis designs. J Oral Maxillofac Surg. 1995;53:984.

    Article  PubMed  Google Scholar 

  4. Perrott DH, Umeda H, Kaban LB. Costochondral graft reconstruction: Reconstruction of the ramus/condyle unit: long term follow-up. Int J Oral Maxillofac Surg. 1994;23:321.

    Article  CAS  PubMed  Google Scholar 

  5. Raustia A, Pernu H, Pyhtinen J, et al. Clinical and computed tomographic findings in costochondral grafts replacing the mandibular condyle. J Oral Maxillofac Surg. 1996;54:1393.

    Article  CAS  PubMed  Google Scholar 

  6. Meikle MC. Remodeling in the temporomandibular joint: a biological basis for clinical practice, 4th edn. In: Sarnat BG, Laskin DM, editors. Philadelphia: WB Saunders; 1992. p. 93.

    Google Scholar 

  7. Copray JCVM, Jansen HWB, Duterloo HS. The role of biomechanical factors in mandibular condylar cartilage growth and remodeling in vitro. In: Carlson DS, McNamara JA, Ribbens K, editors. Developmental aspects of temporomandibular joint disorders, Monograph number 16 craniofacial growth series. Ann Arbor, MI: Center for Human Growth and Development, The University of Michigan; 1985. p. 235–69.

    Google Scholar 

  8. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920.

    Article  CAS  PubMed  Google Scholar 

  9. Bell E. Strategy for the selection of scaffolds for tissue engineering. Tissue Eng. 1995;1:163.

    Article  CAS  PubMed  Google Scholar 

  10. Ingber D. The riddle of morphogenesis: a question of solution chemistry or molecular engineering. Cell. 1993;75:1249.

    Article  CAS  PubMed  Google Scholar 

  11. Kühne JH, Bartl R, Frisch B, et al. Bone formation in coralline hydroxyapatite: effects of pore size studied in rabbits. Acta Orthop Scand. 1994;65:246.

    Article  PubMed  Google Scholar 

  12. Gauthier O, Bouler JM, Aguado E, et al. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 1998;19:133.

    Article  CAS  PubMed  Google Scholar 

  13. Tsuruga E, Takita H, Itoh H, et al. Pore size of porous hydroxyapatite as the cell- substratum controls BMP-induced osteogenesis. J Biochem. 1997;121:317.

    Article  CAS  PubMed  Google Scholar 

  14. Kuboki Y, Saito T, Murata M, et al. Two distinctive BMP-carriers induce zonal chondrogenesis and membranous ossification, respectively; geometrical factors of matrices for cell differentiation. Connect Tissue Res. 1995;32:219.

    Article  CAS  PubMed  Google Scholar 

  15. Ripamonti U, Ma S, Reddi AH. The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix. 1992;12:202.

    Article  CAS  PubMed  Google Scholar 

  16. Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am. 2004;86-A(7):1541–58.

    PubMed  Google Scholar 

  17. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. Critical-sized canine segmental femoral defects are healed by autologous mesenchymal stem cell therapy. 44th annual meeting, Orthopaedic Research Society; 1998. p. 147.

    Google Scholar 

  18. Dennis JE, Haynesworth SE, Young RG, Caplan AI. Osteogenesis in marrow-derived mesenchymal cell porous ceramic composites transplanted subcutaneously: Effect of fibronectin and laminin on cell retention and rate of osteogenic expression. Cell Transplant. 1992;1:23.

    CAS  PubMed  Google Scholar 

  19. Kadiyala S, Jaiswal N, Bruder SP. Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect. Tissue Eng. 1997;3:173.

    Article  Google Scholar 

  20. Krebsbach PH, Kuznetsov SA, Bianco P, et al. Bone marrow stromal cells: characterization and clinical application. Crit Rev Oral Biol Med. 1999;10:165.

    Article  CAS  PubMed  Google Scholar 

  21. Krebsbach PH, Kuznetsov SA, Satomura K, et al. Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation. 1997;63:1059.

    Article  CAS  PubMed  Google Scholar 

  22. Brady GA, Chu TM, Halloran JW. Curing behavior of ceramic resin for stereolithography in solid free form fabrication proceedings. In: JJ Beaman, JW Barlow, DL Bourell and RH Crawford, editors. SFF symposium, Austin, TX; 1996. p. 403–10.

    Google Scholar 

  23. Hollister SJ, Levy R, Chu TM, et al. Design and manufacture of a porous orbital floor scaffold using image processing and rapid prototyping. Proceedings ASME summer meeting; 1997.

    Google Scholar 

  24. Woodruff and Hutmacher. The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in polymer science; 2010.

    Google Scholar 

  25. Lee CH, Cook JL, Mendelson A, et al. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet. 2010;376:440–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Alhadlaq A, Mao JJ. Tissue-engineered neogenesis of human-shaped mandibular condyle from rat mesenchymal stem cells. J Dent Res. 2003;82:951–6.

    Article  CAS  PubMed  Google Scholar 

  27. Alhadlaq A, Mao JJ. Tissue-engineered osteochondral constructs in the shape of an articular condyle. J Bone Joint Surg Am. 2005;87:936–44.

    Article  PubMed  Google Scholar 

  28. Guldberg R. Personnel communication; 1997.

    Google Scholar 

  29. Brighton CT, Unger AS, Stambough JL. In vitro growth of bovine articular chondrocytes in various capacitively coupled electrical fields. J Orthop Res. 1984;2:15–22.

    Article  CAS  PubMed  Google Scholar 

  30. Brighton CT, Wang W, Seldes R, et al. Signal transduction in electrically stimulated bone cells. J Bone Joint Surg Am. 2001;83-A:1514–23.

    CAS  PubMed  Google Scholar 

  31. Wang W, Wang Z, Zhang G, et al. Up-regulation of chondrocyte matrix genes and products by electric fields. Clin Orthop Relat Res. 2004;427(Suppl):S163–73.

    Article  PubMed  Google Scholar 

  32. Xu J, Wang W, Clark CC, et al. Signal transduction in electrically stimulated articular chondrocytes involves translocation of extracellular calcium through voltage-gated channels. Osteoarthritis Cartilage. 2009;17:397–405. doi:10.1016/j.joca.2008.07.001.

    Article  CAS  PubMed  Google Scholar 

  33. Hronik- Tupaj M, Kaplan DK. A review of the responses of two- and three-dimensional engineered tissues to electric fields. Tissue Eng Part B Rev. 2012;18:167–80. doi:10.1089/ten.TEB.2011.0244.

    Google Scholar 

  34. Nyberg J, Adell R, Svensson B. Temporomandibular joint discectomy for treatment of unilateral internal derangements—a 5 year follow-up evaluation. Int J Oral Maxillofac Surg. 2004;33:8–12.

    Article  CAS  PubMed  Google Scholar 

  35. Takaku S, Sano T, Yoshida M. Long-term magnetic resonance imaging after temporomandibular joint discectomy without replacement. J Oral Maxillofac Surg. 2000;58:739–45.

    Article  CAS  PubMed  Google Scholar 

  36. Tong AC, Tideman H. A comparative study on meniscectomy and autogenous graft replacement of the rhesus monkey temporomandibular joint articular disc—Part I. Int J Oral Maxillofac Surg. 2000;29:140.

    Article  CAS  PubMed  Google Scholar 

  37. Brown B, Chung W, Pavlick M, Reppas S, Ochs M, Russell A, Badylak S. Extracellular matrix as an inductive template for temporomandibular joint meniscus reconstruction: a pilot study. J Oral Maxillofac Surg. 2011;69:e488–3505.

    Article  PubMed  Google Scholar 

  38. Brown B, Chung W, Almarza A, Pavlick M, Reppas S, Ochs M, Russell A, Badylak S. Inductive, scaffold-based, regenerative medicine approach to reconstruction of the temporomandibular joint disk. J Oral Maxillofac Surg. 2012;70:2656–68.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Lin CY, Schek RM, Mistry AS, Shi X, Mikos AG, Krebsbach PH, Hollister SJ. Functional bone engineering using ex vivo gene therapy and topology-optimized, biodegradable polymer composite scaffolds. Tisse Eng. 2005;11(9–10):1589–98.

    Google Scholar 

  40. Jongpaiboonkit L, Murphy WL. Mineral-coated polymer microspheres for controlled protein binding and release. Adv Mater. 2009;21:1960.

    Article  CAS  Google Scholar 

  41. Lee JS, Suarez-Gonzalez D, Murphy WL. Mineral coatings for temporally controlled delivery of multiple proteins. Adv Mater. 2011;23:4279–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Guo T, Li Y, Cao G, Zhang Z, Chang S, Czajka-Jakubowska A, Nör JE, Clarkson BH, Liu J. Fluorapatite-modified scaffold on dental pulp stem cell mineralization. J Dent Res. 2014;93(12):1290–5. doi:10.1177/0022034514547914.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Liu J, Jin T, Chang S, Czajka-Jakubowska A, Zhang Z, Nor JE, Clarkson BH. The effect of novel fluorapatite surfaces on osteoblast-like cell adhesion, growth, and mineralization. Tissue Eng. 2010;16(9):2977–86.

    Article  CAS  Google Scholar 

  44. Brighton CT, et al. Signal transduction in electrically stimulated bone cells. J Bone Joint Surg Am. 2001;83-A(10):1514–23.

    CAS  PubMed  Google Scholar 

  45. Wang W, Wang Z, Zhang G, Clark CC, Brighton CT. Up-regulation of chondrocyte matrix genes and products by electric fields. Clin Orthop Relat Res. 2004;427S:S163–73.

    Article  Google Scholar 

  46. Mao JJ, Stosich MS, Moioli EK, Lee CH, Fu SY, Bastian B, Eisig SB, Zemnick C, Acherman J, Wu J, Rohde C, Ahn J. Facial reconstruction by biosurgery: cell transplantation versus cell homing. Tissue Eng Part B Rev. 2010;16(2):257–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Karp JM, Teo GSL. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4(3):206–16.

    Article  CAS  PubMed  Google Scholar 

  48. Lisa Larkin, PhD, University of Michigan. Personal communication; 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen E. Feinberg D.D.S., M.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Santee, E.W., Aronovich, S., Feinberg, S.E. (2016). Bioengineered Tissue TMJ TJR. In: Mercuri, L. (eds) Temporomandibular Joint Total Joint Replacement – TMJ TJR. Springer, Cham. https://doi.org/10.1007/978-3-319-21389-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21389-7_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21388-0

  • Online ISBN: 978-3-319-21389-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics