Skip to main content

Hydrogels for Cell Encapsulation and Bioprinting

  • Chapter
  • First Online:
Bioprinting in Regenerative Medicine

Abstract

Hydrogels play an indispensable role as a cell supporting matrix in bioprinting. Hydrogels are used as bio-inks for cell encapsulation and as a bio-paper for fusion and maturation of cell aggregates. Physiochemical and mechanical characteristics as well as biological properties of hydrogels play an important role in the design of bio-inks and bio-papers in bioprinting. These properties include gelation time, rheological properties, viscosity and mechanical stiffness as well as transport properties, fusibility, and degradation kinetics. This chapter reviews the salient features of hydrogels for use as bio-ink or bio-paper in bioprinting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song SJ, Choi J, Park YD, Lee JJ, Hong SY, Sun K. A three-dimensional bioprinting system for use with a hydrogel-based biomaterial and printing parameter characterization. Artif Organs. 2010;34:1044–8.

    Article  PubMed  Google Scholar 

  2. Calvert P. Printing cells. Science. 2007;318:208–9.

    Article  CAS  PubMed  Google Scholar 

  3. Guillotin B, Guillemot F. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 2011;29:183–90.

    Article  CAS  PubMed  Google Scholar 

  4. Castel D, Pitaval A, Debily M-A, Gidrol X. Cell microarrays in drug discovery. Drug Discov Today. 2006;11:616–22.

    Article  CAS  PubMed  Google Scholar 

  5. Yarmush ML, King KR. Living-cell microarrays. Ann Rev Biomed Eng. 2009;11:235.

    Article  CAS  Google Scholar 

  6. Ovsianikov A, Gruene M, Pflaum M, Koch L, Maiorana F, Wilhelmi M, Haverich A, Chichkov B. Laser printing of cells into 3D scaffolds. Biofabrication. 2010;2:014104.

    Article  CAS  PubMed  Google Scholar 

  7. Khalil S, Sun W. Bioprinting endothelial cells with alginate for 3d tissue constructs. J Biomech Eng. 2009;131:111002.

    Article  PubMed  Google Scholar 

  8. Malda J, Visser J, Melchels FP, Jungst T, Hennink WE, Dhert WJA, Groll J, Hutmacher DW. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater. 2013;25:5011–28.

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura M, Iwanaga S, Henmi C, Arai K, Nishiyama Y. Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication. 2010;2:014110.

    Article  CAS  PubMed  Google Scholar 

  10. Koch L, Gruene M, Unger C, Chichkov B. Laser assisted cell printing. Curr Pharmaceut Biotechnol. 2013;14:91–7.

    CAS  Google Scholar 

  11. Calvert P. Inkjet printing for materials and devices. Chem Mater. 2001;13:3299–305.

    Article  CAS  Google Scholar 

  12. Derby B. Printing and prototyping of tissues and scaffolds. Science. 2012;338:921–6.

    Article  CAS  PubMed  Google Scholar 

  13. Moon S, Hasan SK, Song YS, Xu F, Keles HO, Manzur F, Mikkilineni S, Hong JW, Nagatomi J, Haeggstrom E. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng Part C Methods. 2009;16:157–66.

    Article  PubMed Central  Google Scholar 

  14. Lee W, Pinckney J, Lee V, Lee J-H, Fischer K, Polio S, Park J-K, Yoo S-S. Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport. 2009;20:798–803.

    Article  PubMed  Google Scholar 

  15. Murphy SV, Skardal A, Atala A. Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res Part A. 2013;101:272–84.

    Article  CAS  Google Scholar 

  16. Lee Y-B, Polio S, Lee W, Dai G, Menon L, Carroll RS, Yoo S-S. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol. 2010;223:645–52.

    Article  CAS  PubMed  Google Scholar 

  17. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, Bareille R, Rémy M, Bordenave L, Amédée J. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 2010;31:7250–6.

    Article  CAS  PubMed  Google Scholar 

  18. Skardal A, Zhang J, McCoard L, Xu X, Oottamasathien S, Prestwich GD. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng Part A. 2010;16:2675–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hong S, Song S-J, Lee JY, Jang H, Choi J, Sun K, Park Y. Cellular behavior in micropatterned hydrogels by bioprinting system depended on the cell types and cellular interaction. J Biosci Bioeng. 2013;116:224–30.

    Article  CAS  PubMed  Google Scholar 

  20. Skardal A, Zhang J, Prestwich GD. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials. 2010;31:6173–81.

    Article  CAS  PubMed  Google Scholar 

  21. Pescosolido L, Schuurman W, Malda J, Matricardi P, Alhaique F, Coviello T, van Weeren PR, Dhert WJ, Hennink WE, Vermonden T. Hyaluronic acid and dextran-based semi-ipn hydrogels as biomaterials for bioprinting. Biomacromolecules. 2011;12:1831–8.

    Article  CAS  PubMed  Google Scholar 

  22. Bertassoni LE, Cardoso JC, Manoharan V, Cristino AL, Bhise NS, Araujo WA, Zorlutuna P, Vrana NE, Ghaemmaghami AM, Dokmeci MR. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication. 2014;6:024105.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Mironov V, Prestwich G, Forgacs G. Bioprinting living structures. J Mater Chem. 2007;17:2054–60.

    Article  CAS  Google Scholar 

  24. Buyukhatipoglu K, Chang R, Sun W, Clyne AM. Bioprinted nanoparticles for tissue engineering applications. Tissue Eng Part C Methods. 2009;16:631–42.

    Article  Google Scholar 

  25. Schuurman W, Khristov V, Pot M, Van Weeren P, Dhert W, Malda J. Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication. 2011;3:021001.

    Article  CAS  PubMed  Google Scholar 

  26. Gasperini L, Maniglio D, Motta A, Migliaresi C. An electrohydrodynamic bioprinter for alginate hydrogels containing living cells. Tissue Eng Part C Methods. 2014;21:123–32.

    Article  PubMed  CAS  Google Scholar 

  27. Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 2013;101:1255–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Ilkhanizadeh S, Teixeira AI, Hermanson O. Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials. 2007;28:3936–43.

    Article  CAS  PubMed  Google Scholar 

  29. Kucukgul C, Ozler B, Karakas HE, Gozuacik D, Koc B. 3D hybrid bioprinting of macrovascular structures. Procedia Eng. 2013;59:183–92.

    Article  Google Scholar 

  30. Hong SJ, Jin DP, Buck DW, Galiano RD, Mustoe TA. Impaired response of mature adipocytes of diabetic mice to hypoxia. Exp Cell Res. 2011;317:2299–307.

    Article  CAS  PubMed  Google Scholar 

  31. Fedorovich NE, Kuipers E, Gawlitta D, Dhert WJ, Alblas J. Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors. Tissue Eng Part A. 2011;17:2473–86.

    Article  CAS  PubMed  Google Scholar 

  32. Shim J-H, Lee J-S, Kim JY, Cho D-W. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng. 2012;22:085014.

    Article  CAS  Google Scholar 

  33. Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30:5910–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. de Vos P, Faas MM, Strand B, Calafiore R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials. 2006;27:5603–17.

    Article  PubMed  CAS  Google Scholar 

  35. Murua A, Orive G, Hernández RM, Pedraz JL. Xenogeneic transplantation of erythropoietin-secreting cells immobilized in microcapsules using transient immunosuppression. J Control Release. 2009;137:174–8.

    Article  CAS  PubMed  Google Scholar 

  36. Chang PL, Van Raamsdonk JM, Hortelano G, Barsoum SC, MacDonald NC, Stockley TL. The in vivo delivery of heterologous proteins by microencapsulated recombinant cells. Trends Biotechnol. 1999;17:78–83.

    Article  CAS  PubMed  Google Scholar 

  37. Arai K, Iwanaga S, Toda H, Genci C, Nishiyama Y, Nakamura M. Three-dimensional inkjet biofabrication based on designed images. Biofabrication. 2011;3:034113.

    Article  PubMed  CAS  Google Scholar 

  38. Nishiyama Y, Nakamura M, Henmi C, Yamaguchi K, Mochizuki S, Nakagawa H, Takiura K. Development of a three-dimensional bioprinter: Construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. J Biomech Eng. 2009;131:035001.

    Article  PubMed  Google Scholar 

  39. Xu T, Olson J, Zhao W, Atala A, Zhu J-M, Yoo JJ. Characterization of cell constructs generated with inkjet printing technology using in vivo magnetic resonance imaging. J Manuf Sci Eng. 2008;130:021013.

    Article  Google Scholar 

  40. Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials. 2006;27:3580–8.

    CAS  PubMed  Google Scholar 

  41. Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials. 2009;30:6221–7.

    Article  CAS  PubMed  Google Scholar 

  42. Cui X, Breitenkamp K, Finn M, Lotz M, DʼLima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. 2012;18:1304–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Landers R, Pfister A, Hübner U, John H, Schmelzeisen R, Mülhaupt R. Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J Mater Sci. 2002;37:3107–16.

    Article  CAS  Google Scholar 

  44. Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials. 2001;22:3045–51.

    Article  CAS  PubMed  Google Scholar 

  45. VandeVondele S, Vörös J, Hubbell JA. RGD-grafted poly-L-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnol Bioeng. 2003;82:784–90.

    Article  CAS  PubMed  Google Scholar 

  46. Huang N-P, Vörös J, De Paul SM, Textor M, Spencer ND. Biotin-derivatized poly (L-lysine)-g-poly (ethylene glycol): a novel polymeric interface for bioaffinity sensing. Langmuir. 2002;18:220–30.

    Article  CAS  Google Scholar 

  47. Yang F, Williams CG, D-a W, Lee H, Manson PN, Elisseeff J. The effect of incorporating rgd adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials. 2005;26:5991–8.

    Article  CAS  PubMed  Google Scholar 

  48. Elisseeff J, McIntosh W, Anseth K, Riley S, Ragan P, Langer R. Photoencapsulation of chondrocytes in poly (ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res. 2000;51:164–71.

    Article  CAS  PubMed  Google Scholar 

  49. Jeon O, Bouhadir KH, Mansour JM, Alsberg E. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials. 2009;30:2724–34.

    Article  CAS  PubMed  Google Scholar 

  50. Fedorovich NE, Swennen I, Girones J, Moroni L, Van Blitterswijk CA, Schacht E, Alblas J, Dhert WJ. Evaluation of photocrosslinked lutrol hydrogel for tissue printing applications. Biomacromolecules. 2009;10:1689–96.

    Article  CAS  PubMed  Google Scholar 

  51. Morota K, Matsumoto H, Mizukoshi T, Konosu Y, Minagawa M, Tanioka A, Yamagata Y, Inoue K. Poly (ethylene oxide) thin films produced by electrospray deposition: morphology control and additive effects of alcohols on nanostructure. J Colloid Interf Sci. 2004;279:484–92.

    Article  CAS  Google Scholar 

  52. Cruise GM, Hegre OD, Scharp DS, Hubbell JA. A sensitivity study of the key parameters in the interfacial photopolymerization of poly (ethylene glycol) diacrylate upon porcine islets. Biotechnol Bioeng. 1998;57:655–65.

    Article  CAS  PubMed  Google Scholar 

  53. Ferris CJ, Gilmore KJ, Beirne S, McCallum D, Wallace GG, het Panhuis M. Bio-ink for on-demand printing of living cells. Biomater Sci. 2013;1:224–30.

    Article  CAS  Google Scholar 

  54. Moon S, Ceyhan E, Gurkan UA, Demirci U. Statistical modeling of single target cell encapsulation. PLoS One. 2011;6:e21580.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Jakab K, Neagu A, Mironov V, Markwald RR, Forgacs G. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc Natl Acad Sci U S A. 2004;101:2864–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Jeong B, Lee KM, Gutowska A, An YH. Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering. Biomacromolecules. 2002;3:865–8.

    Article  CAS  PubMed  Google Scholar 

  57. Ohya S, Nakayama Y, Matsuda T. Thermoresponsive artificial extracellular matrix for tissue engineering: hyaluronic acid bioconjugated with poly (n-isopropylacrylamide) grafts. Biomacromolecules. 2001;2:856–63.

    Article  CAS  PubMed  Google Scholar 

  58. Molinaro G, Leroux J-C, Damas J, Adam A. Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials. 2002;23:2717–22.

    Article  CAS  PubMed  Google Scholar 

  59. Iwami K, Noda T, Ishida K, Morishima K, Nakamura M, Umeda N. Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel. Biofabrication. 2010;2:014108.

    Article  CAS  PubMed  Google Scholar 

  60. Landers R, Hübner U, Schmelzeisen R, Mülhaupt R. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials. 2002;23:4437–47.

    Article  CAS  PubMed  Google Scholar 

  61. Biase M D, Saunders RE, Tirelli N, Derby B. Inkjet printing and cell seeding thermoreversible photocurable gel structures. Soft Matter. 2011;7:2639–46.

    Article  CAS  Google Scholar 

  62. Boland T, Mironov V, Gutowska A, Roth E, Markwald RR. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol. 2003;272:497–502.

    Article  PubMed  Google Scholar 

  63. Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Yaremchuk M, Langer R. Transdermal photopolymerization of poly (ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg. 1999;104:1014–22.

    Article  CAS  PubMed  Google Scholar 

  64. Baier Leach J, Bivens KA, Patrick CW Jr, Schmidt CE. Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng. 2003;82:578–89.

    Article  PubMed  CAS  Google Scholar 

  65. Park YD, Tirelli N, Hubbell JA. Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials. 2003;24:893–900.

    Article  CAS  PubMed  Google Scholar 

  66. Tsang VL, Chen AA, Cho LM, Jadin KD, Sah RL, DeLong S, West JL, Bhatia SN. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J. 2007;21:790–801.

    Article  CAS  Google Scholar 

  67. Gyenes T, Torma V, Gyarmati B, Zrínyi M. Synthesis and swelling properties of novel pH-sensitive poly (aspartic acid) gels. Acta Biomater. 2008;4:733–44.

    Article  CAS  PubMed  Google Scholar 

  68. Lutolf M, Lauer-Fields J, Schmoekel H, Metters A, Weber F, Fields G, Hubbell J. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A. 2003;100:5413–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Mironov V, Kasyanov V, Markwald R. Bioprinting: Directed tissue self-assembly. Chem Eng Prog. 2007;103:S12.

    CAS  Google Scholar 

  70. Mehra TD, Ghosh K, Shu XZ, Prestwich GD, Clark RA. Molecular stenting with a crosslinked hyaluronan derivative inhibits collagen gel contraction. J Invest Derm. 2006;126:2202–9.

    Article  CAS  PubMed  Google Scholar 

  71. Moon JJ, Hahn MS, Kim I, Nsiah BA, West JL. Micropatterning of poly (ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue Eng Part A. 2008;15:579–85.

    Article  PubMed Central  Google Scholar 

  72. Wylie RG, Ahsan S, Aizawa Y, Maxwell KL, Morshead CM, Shoichet MS. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat Mater. 2011;10:799–806.

    Article  CAS  PubMed  Google Scholar 

  73. Moon JJ, West JL. Vascularization of engineered tissues: Approaches to promote angio-genesis in biomaterials. Curr Topics Med Chem. 2008;8:300–10.

    Article  CAS  Google Scholar 

  74. Leslie-Barbick JE, Shen C, Chen C, West JL. Micron-scale spatially patterned, covalently immobilized vascular endothelial growth factor on hydrogels accelerates endothelial tubulogenesis and increases cellular angiogenic responses. Tissue Eng Part A. 2010;17:221–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Saik JE, Gould DJ, Watkins EM, Dickinson ME, West JL. Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly (ethylene glycol) hydrogels. Acta Biomater. 2011;7:133–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Wylie RG, Shoichet MS. Three-dimensional spatial patterning of proteins in hydrogels. Biomacromolecules. 2011;12:3789–96.

    Article  CAS  PubMed  Google Scholar 

  77. Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature. 1997;385:537–40.

    Article  CAS  PubMed  Google Scholar 

  78. Nuttelman CR, Mortisen DJ, Henry SM, Anseth KS. Attachment of fibronectin to poly (vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and migration. J Biomed Mater Res. 2001;57:217–23.

    Article  CAS  PubMed  Google Scholar 

  79. Benoit DS, Anseth KS. Heparin functionalized PEG gels that modulate protein adsorption for hMSC adhesion and differentiation. Acta Biomater. 2005;1:461–70.

    Article  PubMed  Google Scholar 

  80. Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine. 2010;5:469–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Prestwich GD, Shu XZ, Liu Y, Cai S, Walsh JF, Hughes CW, et al. Injectable synthetic extracellular matrices for tissue engineering and repair. In: Fisher JP, Editor. Tissue Engineering. New York: Springer; 2007. pp. 125–33.

    Google Scholar 

  82. Neagu A, Jakab K, Jamison R, Forgacs G. Role of physical mechanisms in biological self-organization. Phys Rev Lett. 2005;95:178104.

    Article  PubMed  CAS  Google Scholar 

  83. Pérez-Pomares JM, Foty RA. Tissue fusion and cell sorting in embryonic development and disease: biomedical implications. Bioessays. 2006;28:809–21.

    Article  PubMed  Google Scholar 

  84. Jakab K, Norotte C, Damon B, Marga F, Neagu A, Besch-Williford CL, Kachurin A, Church KH, Park H, Mironov V. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng Part A. 2008;14:413–21.

    Article  CAS  PubMed  Google Scholar 

  85. Forgacs G, Foty RA, Shafrir Y, Steinberg MS. Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys J. 1998;74:2227–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Foty RA, Steinberg MS. The differential adhesion hypothesis: a direct evaluation. Dev Biol. 2005;278:255–63.

    Article  CAS  PubMed  Google Scholar 

  87. Robinson EE, Zazzali KM, Corbett SA, Foty RA. Α5β1 integrin mediates strong tissue cohesion. J Cell Sci. 2003;116:377–86.

    Article  CAS  PubMed  Google Scholar 

  88. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 2003;21:157–61.

    Article  CAS  PubMed  Google Scholar 

  89. Rago AP, Dean DM, Morgan JR. Controlling cell position in complex heterotypic 3d microtissues by tissue fusion. Biotechnol Bioeng. 2009;102:1231–41.

    Article  CAS  PubMed  Google Scholar 

  90. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. Biomaterials. 2009;30:2164–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Roth EA, Xu T, Das M, Gregory C, Hickman JJ, Boland T. Inkjet printing for high-throughput cell patterning. Biomaterials. 2004;25:3707–15.

    Article  CAS  PubMed  Google Scholar 

  92. Wilson WC, Boland T. Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol. 2003;272:491–6.

    Article  PubMed  Google Scholar 

  93. Jakab K, Damon B, Neagu A, Kachurin A, Forgacs G. Three-dimensional tissue constructs built by bioprinting. Biorheology. 2006;43:509–13.

    PubMed  Google Scholar 

  94. Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26:93–9.

    Article  PubMed  CAS  Google Scholar 

  95. Boland T, Tao X, Damon BJ, Manley B, Kesari P, Jalota S, Bhaduri S. Drop-on-demand printing of cells and materials for designer tissue constructs. Mater Sci Eng C. 2007;27:372–6.

    Article  CAS  Google Scholar 

  96. Shu XZ, Ahmad S, Liu Y, Prestwich GD. Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering. J Biomed Mater Res Part A. 2006;79:902–12.

    Article  CAS  Google Scholar 

  97. Shu XZ, Liu Y, Palumbo F, Prestwich GD. Disulfide-crosslinked hyaluronan-gelatin hydrogel films: a covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials. 2003;24:3825–34.

    Article  CAS  PubMed  Google Scholar 

  98. Shu XZ, Ghosh K, Liu Y, Palumbo FS, Luo Y, Clark RA, Prestwich GD. Attachment and spreading of fibroblasts on an RGD peptide-modified injectable hyaluronan hydrogel. J Biomed Mater Res Part A. 2004;68:365–75.

    Article  CAS  Google Scholar 

  99. Ghosh K, Ren X-D, Shu XZ, Prestwich GD, Clark RA. Fibronectin functional domains coupled to hyaluronan stimulate adult human dermal fibroblast responses critical for wound healing. Tissue Eng. 2006;12:601–13.

    Article  CAS  PubMed  Google Scholar 

  100. Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJA, Hutmacher DW, Melchels FPW, Klein TJ, Malda J. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci. 2013;13:551–61.

    Article  CAS  PubMed  Google Scholar 

  101. Dababneh AB, Ozbolat IT. Bioprinting technology: a current state-of-the-art review. J Manuf Sci Eng Trans ASME. 2014;136:061016.

    Article  Google Scholar 

  102. Flory PJ. Principles of polymer chemistry. New York: Cornell University Press; 1953.

    Google Scholar 

  103. Cushing MC, Anseth KS. Hydrogel cell cultures. Science. 2007;316:1133–4.

    Article  CAS  PubMed  Google Scholar 

  104. Moeinzadeh S, Barati D, He XZ, Jabbari E. Gelation characteristics and osteogenic differentiation of stromal cells in inert hydrolytically degradable micellar polyethylene glycol hydrogels. Biomacromolecules. 2012;13:2073–86.

    Article  CAS  PubMed  Google Scholar 

  105. Moeinzadeh S, Jabbari E. Nanostructure formation in hydrogels. In: Bhushan B et al. editors. Handbook of nanomaterials properties. Berlin: Springer Berlin Heidelberg; 2014. pp. 285–97.

    Chapter  Google Scholar 

  106. Cohen DL, Malone E, Lipson H, Bonassar LJ. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng. 2006;12:1325–35.

    Article  CAS  PubMed  Google Scholar 

  107. O’Lenick TG, Jin NX, Woodcock JW, Zhao B. Rheological properties of aqueous micellar gels of a thermo- and pH-sensitive aABA triblock copolymer. J Phys Chem B. 2011;115:2870–81.

    Article  PubMed  CAS  Google Scholar 

  108. Moeinzadeh S, Barati D, Sarvestani SK, Karaman O, Jabbari E. Nanostructure formation and transition from surface to bulk degradation in polyethylene glycol gels chain-extended with short hydroxy acid segments. Biomacromolecules. 2013;14:2917–28.

    Article  CAS  PubMed  Google Scholar 

  109. Moeinzadeh S, Jabbari E. Mesoscale simulation of the effect of a lactide segment on the nanostructure of star poly(ethylene glycol-co-lactide)-acrylate macromonomers in aqueous solution. J Phys Chem B. 2012;116:1536–43.

    Article  CAS  PubMed  Google Scholar 

  110. Moeinzadeh S, Khorasani SN, Ma JY, He X, Jabbari E. Synthesis and gelation characteristics of photo-crosslinkable star poly (ethylene oxide-co-lactide-glycolide acrylate) macromonomers. Polymer. 2011;52:3887–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Odian G. Principles of polymerization. New York: Wiley; 1981.

    Google Scholar 

  112. Queen D, Gaylor JDS, Evans JH, Courtney JM, Reid WH. The preclinical evaluation of the water-vapor transmission rate through burn wound dressings. Biomaterials. 1987;8:367–71.

    Article  CAS  PubMed  Google Scholar 

  113. Amsden B. Solute diffusion within hydrogels. Mechanisms and models. Macromolecules. 1998;31:8382–95.

    Article  CAS  Google Scholar 

  114. Peppas NA, Lustig SR. Solute diffusion in hydrophilic network structures. In: Peppas NA, editor. Hydrogels in medicine and pharmacy Vol. I Fundamentals. Boca Raton: CRC Press; 1986. pp. 57–84.

    Google Scholar 

  115. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E. Theoretical description of hydrogel swelling: a review. Iranian Polym J. 2010;19:375–98.

    CAS  Google Scholar 

  116. Sukumar VS, Lopina ST. Network model for the swelling properties of end-linked linear and star poly(ethylene oxide) hydrogels. Macromolecules. 2002;35:10189–92.

    Article  CAS  Google Scholar 

  117. Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharmaceut Biopharmaceut. 2000;50:27–46.

    Article  CAS  Google Scholar 

  118. Barati D, Moeinzadeh S, Karaman O, Jabbari E. Time dependence of material properties of polyethylene glycol hydrogels chain extended with short hydroxy acid segments. Polymer. 2014;55:3894–904.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Khetan S, Guvendiren M, Legant WR, Cohen DM, Chen CS, Burdick JA. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat Mater. 2013;12:458–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Chatterjee K, Lin-Gibson S, Wallace WE, Parekh SH, Lee YJ, Cicerone MT, Young MF, Simon CG. The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening. Biomaterials. 2010;31:5051–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Chen YC, Lin RZ, Qi H, Yang YZ, Bae HJ, Melero-Martin JM, Khademhosseini A. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater. 2012;22:2027–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Henderson JA, He X, Jabbari E. Concurrent differentiation of marrow stromal cells to osteogenic and vasculogenic lineages. Macromol Biosci. 2008;8:499–507.

    Article  CAS  PubMed  Google Scholar 

  123. Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: Challenges and future trends. IEEE Trans Biomed Eng. 2013;60:691–9.

    Article  PubMed  Google Scholar 

  124. Jin R, Teixeira LSM, Krouwels A, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J. Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via michael addition: an injectable biomaterial for cartilage repair. Acta Biomater. 2010;6:1968–77.

    Article  CAS  PubMed  Google Scholar 

  125. Ye Q, Zund G, Benedikt P, Jockenhoevel S, Hoerstrup SP, Sakyama S, Hubbell JA, Turina M. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardio Thor Surg. 2000;17:587–91.

    Article  CAS  Google Scholar 

  126. Ashton RS, Banerjee A, Punyani S, Schaffer DV, Kane RS. Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture. Biomaterials. 2007;28:5518–25.

    Article  CAS  PubMed  Google Scholar 

  127. Kharkar PM, Kiick KL, Kloxin AM. Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem Soc Rev. 2013;42:7335–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Lutolf MR, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R, Hubbell JA. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol. 2003;21:513–8.

    Article  CAS  PubMed  Google Scholar 

  129. Kraehenbuehl TP, Ferreira LS, Zammaretti P, Hubbell JA, Langer R. Cell-responsive hydrogel for encapsulation of vascular cells. Biomaterials. 2009;30:4318–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Ko CY, Yang CY, Yang SR, Ku KL, Tsao CK, Chuang DCC, Chu IM, Cheng MH. Cartilage formation through alterations of amphiphilicity of poly(ethylene glycol)-poly(caprolactone) copolymer hydrogels. RSC Adv. 2013;3:25769–79.

    Article  CAS  Google Scholar 

  131. Nakayama Y, Okuda K, Takamizawa K, Nakayama A. Preparation of well-defined poly(ether-ester) macromers: photogelation and biodegradability. Acta Biomater. 2011;7:1496–503.

    Article  CAS  PubMed  Google Scholar 

  132. Sarvestani AS, Xu W, He X, Jabbari E. Gelation and degradation characteristics of in situ photo-crosslinked poly (l-lactide-co-ethylene oxide-co-fumarate) hydrogels. Polymer. 2007;48:7113–20.

    Article  CAS  Google Scholar 

  133. Moeinzadeh S, Khorasani SN, Ma J, He X, Jabbari E. Synthesis and gelation characteristics of photo-crosslinkable star poly (ethylene oxide-co-lactide-glycolide acrylate) macromonomers. Polymer. 2011;52:3887–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. He JL, Zhang MZ, Ni PH. Rapidly in situ forming polyphosphoester-based hydrogels for injectable drug delivery carriers. Soft Matter. 2012;8:6033–8.

    Article  CAS  Google Scholar 

  135. Wang YC, Lee WJ, Ju SP. Modeling of the polyethylene and poly(L-lactide) triblock copolymer: a dissipative particle dynamics study. J Chem Phys. 2009;131:124901.

    Article  PubMed  CAS  Google Scholar 

  136. Rodriguez-Galan A, Franco L, Puiggali J. Degradable poly(ester amide)s for biomedical applications. Polymers. 2011;3:65–99.

    Article  CAS  Google Scholar 

  137. Zheng YT, He CL, Huynh CT, Lee DS. Biodegradable ph- and temperature-sensitive multiblock copolymer hydrogels based on poly(amino-ester urethane)s. Macromol Res. 2010;18:974–80.

    Article  CAS  Google Scholar 

  138. Zhang NL, Kohn DH. Using polymeric materials to control stem cell behavior for tissue regeneration. Birth Defects Res C Embryo Today Rev. 2012;96:63–81.

    Article  CAS  Google Scholar 

  139. Drury JL, Dennis RG, Mooney DJ. The tensile properties of alginate hydrogels. Biomaterials. 2004;25:3187–99.

    Article  CAS  PubMed  Google Scholar 

  140. Koob TJ, Hernandez DJ. Mechanical and thermal properties of novel polymerized ndga-gelatin hydrogels. Biomaterials. 2003;24:1285–92.

    Article  CAS  PubMed  Google Scholar 

  141. Gu W, Yao H, Huang C, Cheung H. New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. J Biomech. 2003;36:593–8.

    Article  CAS  PubMed  Google Scholar 

  142. Ahearne M, Yang Y, Haj AJ E, Then KY, Liu K-K. Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J R Soc Interface. 2005;2:455–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Constantinides G, Kalcioglu ZI, McFarland M, Smith JF, Van Vliet KJ. Probing mechanical properties of fully hydrated gels and biological tissues. J Biomech. 2008;41:3285–9.

    Article  PubMed  Google Scholar 

  144. Gabler S, Stampfl J, Koch T, Seidler S, Schuller G, Redl H, Juras V, Trattnig S, Weidisch R. Determination of the viscoelastic properties of hydrogels based on polyethylene glycol diacrylate (peg-da) and human articular cartilage. Int J Mater Eng Innov. 2009;1:3–20.

    Article  Google Scholar 

  145. Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera-Feliciano J, Mooney DJ. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater. 2010;9:518–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Aamer KA, Sardinha H, Bhatia SR, Tew GN. Rheological studies of PLLA-PEO-PLLA triblock copolymer hydrogels. Biomaterials. 2004;25:1087–93.

    Article  CAS  PubMed  Google Scholar 

  147. Pollock JF, Healy KE. Mechanical and swelling characterization of poly(n-isopropyl acrylamide-co-methoxy poly(ethylene glycol) methacrylate) sol-gels. Acta Biomater. 2010;6:1307–18.

    Article  CAS  PubMed  Google Scholar 

  148. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 2010;31:5536–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  149. Amsden BG, Misra G, Gu F, Younes HM. Synthesis and characterization of a photo-crosslinked biodegradable elastomer. Biomacromolecules. 2004;5:2479–86.

    Article  CAS  PubMed  Google Scholar 

  150. Cima LG, Lopina ST. Network structures of radiation-crosslinked star polymer gels. Macromolecules. 1995;28:6787–94.

    Article  CAS  Google Scholar 

  151. Elliott JE, Bowman CN. Kinetics of primary cyclization reactions in cross-linked polymers: an analytical and numerical approach to heterogeneity in network formation. Macromolecules. 1999;32:8621–8.

    Article  CAS  Google Scholar 

  152. Sarvestani AS, Xu WJ, He X, Jabbari E. Gelation and degradation characteristics of in situ photo-crosslinked poly(l-lactid-co-ethylene oxide-co-fumarate) hydrogels. Polymer. 2007;48:7113–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants to E. Jabbari from the National Science Foundation under grant Nos. DMR1049381, IIP-1357109, and CBET1403545, the National Institutes of Health under grant No. AR063745, and the AO Foundation under grant No. C10-44J. The authors thank Mr. Samuel Keeney (biomedical engineering, University of South Carolina) for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaiel Jabbari PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pajoum Shariati, S., Moeinzadeh, S., Jabbari, E. (2015). Hydrogels for Cell Encapsulation and Bioprinting. In: Turksen, K. (eds) Bioprinting in Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-21386-6_4

Download citation

Publish with us

Policies and ethics