Skip to main content

Bioprinting with Live Cells

  • Chapter
  • First Online:
Book cover Bioprinting in Regenerative Medicine

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1788 Accesses

Abstract

Tissue engineering is an emerging multidisciplinary field to regenerate damaged or diseased tissues and organs. Traditional tissue engineering strategies involve seeding cells into porous scaffolds to regenerate tissues or organs. However, there are still some challenges such as difficulty in seeding different type of cells spatially into a scaffold, limited oxygen and nutrient delivery and removal of metabolic waste from scaffold and weak cell-adhesion to scaffold material need to be overcome for clinically successful results. Because of those challenges, novel scaffold-free approaches based on cellular self-assembly or three-dimensional (3D) bioprinting have been recently pursued. Bioprinting is a relatively new technology where living cells with or without biomaterials are printed layer-by-layer in order to create 3D living structures. In 3D bioprinting, cell aggregates and hydrogels are termed as bioink used as building blocks that are placed by the bioprinter into precise architecture according to developed computer models. In this chapter, we focus on the scaffold-free, self-assembly based bioprinting approaches and some of the novel developments in this field. This chapter will also discuss the importance as well as the challenges for 3D bioprinting using stem cells. We aim to highlight the importance of the continuous cell printing in order to fabricate 3D biological structures with predefined shapes as being the building blocks of large and complex tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(0036-8075 (Print)):920–6.

    Article  CAS  PubMed  Google Scholar 

  2. Pollok JM, Vacanti JP. Tissue engineering. Semin Pediatr Surg. 1996;8586(1055-8586 (Print)):191–6.

    Google Scholar 

  3. Nakayama K. In vitro biofabrication of tissues and organs. In: Forgacs G, Sun W, editors. Biofabrication: micro- and nano-fabrication, printing, patterning and assemblies. Amsterdam: Elsevier; 2013. p. 1–16. doi:10.1016/B978-1-4557-2852-7.00013-5.

    Google Scholar 

  4. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367(9518):1241–6.

    Article  PubMed  Google Scholar 

  5. Brittberg M, Nilsson A, Lindahl A, Ohlsson C, Peterson L.. Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop Relat Res. 1996;326(0009-921X (Print)):270–83.

    Article  PubMed  Google Scholar 

  6. Gallico GG, OʼConnor NE, Compton CC, Kehinde O, Green H. Permanent coverage of large burn wounds with autologous cultured human epithelium. New Engl J Med. 1984;311(7):448–51.

    Article  PubMed  Google Scholar 

  7. Hibino N, McGillicuddy E, Matsumura G, Ichihara Y, Naito Y, Breuer C, et al. Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg. 2010;139(2):431–6.e2.

    Article  PubMed  Google Scholar 

  8. Matsumura G, Ishihara Y, Miyagawa-Tomita S, Ikada Y, Matsuda S, Kurosawa H, Shin’oka T, et al. Evaluation of tissue-engineered vascular autografts. Tissue Eng. 2006;12(1076–3279 (Print)):3075–83.

    Article  CAS  PubMed  Google Scholar 

  9. Niemeyer P, Krause U, Fellenberg J, Kasten P, Seckinger A, Ho AD, Simank HG, et al. Evaluation of mineralized collagen and alpha-tricalcium phosphate as scaffolds for tissue engineering of bone using human mesenchymal stem cells. Cells Tissues Organs. 2004;177(2)(1422–6405 (Print)):880–5.

    Article  CAS  Google Scholar 

  10. Oberpenning F, Meng J, Yoo JJ, Atala A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotech. 1999;17(2):149–55.

    Article  CAS  Google Scholar 

  11. Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Nati Acad Sci. 2004;101(52):18129–34.

    Article  CAS  Google Scholar 

  12. Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovascr Surg. 2005;129(6):1330–8.

    Article  Google Scholar 

  13. Nakamura M, Iwanaga S, Henmi C, Arai K, Nishiyama Y. Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication. 2010;2(1):014110.

    Article  CAS  PubMed  Google Scholar 

  14. Wüst S, Müller R, Hofmann S. Controlled positioning of cells in biomaterials—approaches towards 3D tissue printing. J Funct Biomater. 2011;2(3):119–54.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW. Additive manufacturing of tissues and organs. Prog Polym Sci. 2012;37(8):1079–104.

    Article  CAS  Google Scholar 

  16. Khoda AKM, Ozbolat IT, Koc B. A functionally gradient variational porosity architecture for hollowed scaffolds fabrication. Biofabrication. 2011;3(3):034106.

    Article  CAS  PubMed  Google Scholar 

  17. Khoda AKM, Ozbolat IT, Koc B. Designing heterogeneous porous tissue scaffolds for additive manufacturing processes. Comput-Aided Des. 2013;45(12):1507–23.

    Article  Google Scholar 

  18. Matsuda N, Shimizu T, Yamato M, Okano T. Tissue engineering based on cell sheet technology. Adv Mater. 2007;19(20):3089–99.

    Article  CAS  Google Scholar 

  19. Mironov V, Prestwich G, Forgacs G. Bioprinting living structures. J Mater Chem. 2007;17(20):2054–60.

    Article  CAS  Google Scholar 

  20. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. Biomaterials. 2009;30(12):2164–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Gabor F. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication. 2010;2(2):022001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. LʼHeureux N, Dusserre N, Konig G, Victor B, Keire P, Wight TN, et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med. 2006;12(3):361–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. L’Heureux N, Pâquet S, Labbé R, Germain L, Auger FA. A completely biological tissue-engineered human blood vessel. FASEB J. 1998;12(1):47–56.

    PubMed  Google Scholar 

  24. Ferris C, Gilmore K, Wallace G, in het Panhuis M. Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol. 2013;97(10):4243–58.

    Article  CAS  PubMed  Google Scholar 

  25. Marga F, Jakab K, Khatiwala C, Shepherd B, Dorfman S, Hubbard B, et al. Toward engineering functional organ modules by additive manufacturing. Biofabrication. 2012;4(2):022001.

    Article  PubMed  Google Scholar 

  26. Forgacs G, Foty RA, Shafrir Y, Steinberg MS. Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys J. 1998;74(5):2227–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Koç B, Hafezi F, Ozler SB, Kucukgul C. Bioprinting-application of additive manufacturing in medicine. In: Bandyopadhyay A, Bose S, editors. Additive manufacturing. CRC Press; in press.

    Google Scholar 

  28. Chang CC, Boland ED, Williams SK, Hoying JB. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res B Appl Biomater. 2011;98B(1):160–70.

    Article  CAS  Google Scholar 

  29. Odde DJ, Renn MJ. Laser-guided direct writing for applications in biotechnology. Trends Biotechnol. 1999;17(10):385–9.

    Article  CAS  PubMed  Google Scholar 

  30. Nahmias Y, Schwartz RE, Verfaillie CM, Odde DJ. Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol Bioeng. 2005;92(2):129–36.

    Article  CAS  PubMed  Google Scholar 

  31. Zhen M, Russell KP, Qin W, Julie XY, Xiaocong Y, Peng X, et al. Laser-guidance-based cell deposition microscope for heterotypic single-cell micropatterning. Biofabrication. 2011;3(3):034107.

    Article  Google Scholar 

  32. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotech. 2014;32(8):773–85.

    Article  CAS  Google Scholar 

  33. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 2010;31(28):7250–6.

    Article  CAS  PubMed  Google Scholar 

  34. Barron JA, Ringeisen BR, Kim H, Spargo BJ, Chrisey DB. Application of laser printing to mammalian cells. Thin Solid Films. 2004;453–454(0):383–7.

    Article  CAS  Google Scholar 

  35. Ringeisen BR, Kim H, Barron JA, Krizman DB, Chrisey DB, Jackman S, Auyeung RY, et al. Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng. 2004;(1076–3279 (Print))10(3–4):483–91.

    Article  CAS  PubMed  Google Scholar 

  36. Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M, et al. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater. 2010;6(7):2494–500.

    Article  CAS  PubMed  Google Scholar 

  37. Haraguchi Y, Shimizu T, Yamato M, Okano T. Regenerative therapies using cell sheet-based tissue engineering for cardiac disease. Cardiol Res Pract. 2011;2011:845170.

    PubMed Central  PubMed  Google Scholar 

  38. Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circul Res. 2002;90(1524–4571 (Electronic)):e40.

    Article  CAS  Google Scholar 

  39. Imen Elloumi H, Masayuki Y, Teruo O. Cell sheet technology and cell patterning for biofabrication. Biofabrication. 2009;1(2):022002.

    Article  CAS  Google Scholar 

  40. Shimizu T, Yamato M, Akutsu T, Shibata T, Isoi Y, Kikuchi A, et al. Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets. J Biomed Mater Res. 2002;60(1):110–7.

    Article  CAS  PubMed  Google Scholar 

  41. Haraguchi Y, Shimizu T, Yamato M, Kikuchi A, Okano T. Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation. Biomaterials. 2006;27(27):4765–74.

    Article  CAS  PubMed  Google Scholar 

  42. Shimizu T, Sekine H, Isoi Y, Yamato M, Kikuchi A, Okano T. Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng. 2006;12(1076–3279 (Print)):499–507.

    Article  CAS  PubMed  Google Scholar 

  43. Yamato M, Utsumi M, Kushida A, Konno C, Kikuchi A, Okano T.. Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng. 2001;7(1076–3279 (Print)):473–80.

    Article  CAS  PubMed  Google Scholar 

  44. Kushida A, Yamato M, Isoi Y, Kikuchi A, Okano T. A noninvasive transfer system for polarized renal tubule epithelial cell sheets using temperature-responsive culture dishes. Eur Cell Materl 2005;10(1473–2262 (Electronic)):23–30.

    CAS  Google Scholar 

  45. Akizuki T, Oda S, Komaki M, Tsuchioka H, Kawakatsu N, Kikuchi A, et al. Application of periodontal ligament cell sheet for periodontal regeneration: a pilot study in beagle dogs. J Periodontal Res. 2005;40(3):245–51.

    Article  PubMed  Google Scholar 

  46. Hasegawa M, Yamato M, Kikuchi A, Okano T, Ishikawa I.. Human periodontal ligament cell sheets can regenerate periodontal ligament tissue in an athymic rat model. Tissue Eng. 2005;11(1076–3279 (Print)):469–78.

    Article  CAS  PubMed  Google Scholar 

  47. Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJA, et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater. 2013;25(36):5011–28.

    Article  CAS  PubMed  Google Scholar 

  48. Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K, Iwasaki Y, et al. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng. 2005;11(1076–3279 (Print)):1658–66.

    Article  CAS  PubMed  Google Scholar 

  49. Wilson WC, Boland T. Cell and organ printing 1: protein and cell printers. Anat Rec A: Discov Mol, Cell, Evol Biol. 2003;272 A(2):491–6.

    Article  Google Scholar 

  50. Boland T, Mironov V, Gutowska A, Roth EA, Markwald RR. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anatomical Rec A: Discov Mol, Cell, Evol Biol. 2003;272 A(2):497–502.

    Article  Google Scholar 

  51. Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  52. Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials. 2009;30(31):6221–7.

    Article  CAS  PubMed  Google Scholar 

  53. Boland T, Tao X, Damon BJ, Manley B, Kesari P, Jalota S, et al. Drop-on-demand printing of cells and materials for designer tissue constructs. Mater Sci Eng: C. 2007;27(3):372–6.

    Article  CAS  Google Scholar 

  54. Nakamura M, Nishiyama Y, Henmi C, Yamaguchi K, Mochizuki S, Koki T, et al. Inkjet bioprinting as an effective tool for tissue fabrication. NIP Digital Fabr Conf. 2006;2006(3):89–92.

    Google Scholar 

  55. Nishiyama Y, Nakamura M, Henmi C, Yamaguchi K, Mochizuki S, Nakagawa H, et al. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. J Biomech Eng. 2008;131(3):035001.

    Article  Google Scholar 

  56. Xu C, Chai W, Huang Y, Markwald RR. Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol Bioeng. 2012;109(12):3152–60.

    Article  CAS  PubMed  Google Scholar 

  57. Khatiwala C, Law R, Shepherd B, Dorfman S, Csete M. 3D cell bioprinting for regenerative medicine research and therapies. Gene Ther Regul. 2012;07(01):1230004.

    Article  CAS  Google Scholar 

  58. Shabnam P, Madhuja G, Frédéric L, Karen CC. Effects of surfactant and gentle agitation on inkjet dispensing of living cells. Biofabrication. 2010;2(2):025003.

    Article  CAS  Google Scholar 

  59. Chahal D, Ahmadi A, Cheung KC. Improving piezoelectric cell printing accuracy and reliability through neutral buoyancy of suspensions. Biotechnol Bioeng. 2012;109(11):2932–40.

    Article  CAS  PubMed  Google Scholar 

  60. Ferris CJ, Gilmore KJ, Beirne S, McCallum D, Wallace GG, In het Panhuis M. Bio-ink for on-demand printing of living cells. Biomater Sci. 2013;1(2):224–30.

    Article  CAS  Google Scholar 

  61. Foty RA, Steinberg MS. The differential adhesion hypothesis: a direct evaluation. Dev Biol. 2005;278(1):255–63.

    Article  CAS  PubMed  Google Scholar 

  62. Steinberg MS. Differential adhesion in morphogenesis: a modern view. Curr Opin Genet Dev. 2007;17(4):281–6.

    Article  CAS  PubMed  Google Scholar 

  63. Steinberg MS. Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science. 1963;141(0036-8075 (Print)):401–8.

    Article  CAS  PubMed  Google Scholar 

  64. Jakab K, Norotte C, Damon B, Marga F, Neagu A, Besch-Williford CL, Kachurin A, et al. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. 2008;14(1937–3341 (Print)):413–21.

    Article  CAS  Google Scholar 

  65. Kelm JM, Lorber V, Snedeker JG, Schmidt D, Broggini-Tenzer A, Weisstanner M, et al. A novel concept for scaffold-free vessel tissue engineering: Self-assembly of microtissue building blocks. J Biotechnol. 2010;148(1):46–55.

    Article  CAS  PubMed  Google Scholar 

  66. Gwyther TA, Hu JZ, Christakis AG, Skorinko JK, Shaw SM, Billiar KL, et al. Engineered vascular tissue fabricated from aggregated smooth muscle cells. Cells Tissues Organs. 2011;194(1):13–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Adebayo O, Hookway TA, Hu JZ, Billiar KL, Rolle MW. Self-assembled smooth muscle cell tissue rings exhibit greater tensile strength than cell-seeded fibrin or collagen gel rings. J Biomed Mater Res A. 2013;101 A(2):428–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Napolitano AP, Chai P, Dean DM, Morgan JR. Dynamics of the self-assembly of complex cellular aggregates on micromolded nonadhesive hydrogels. Tissue Eng. 2007;13(1076–3279 (Print)):2087–94.

    Article  CAS  PubMed  Google Scholar 

  69. Dean DM, Napolitano AP, Youssef J, Morgan JR. Rods, tori, and honeycombs: the directed self-assembly of microtissues with prescribed microscale geometries. FASEB J. 2007;21(14):4005–12.

    Article  CAS  PubMed  Google Scholar 

  70. Khalil S, Nam J, Sun W. Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyp J. 2005;11(1):9–17.

    Article  Google Scholar 

  71. Khalil S, Sun W. Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Mater Sci Eng: C. 2007;27(3):469–78.

    Article  CAS  Google Scholar 

  72. Smith CM, Christian JJ, Warren WL, Williams SK. Characterizing environmental factors that impact the viability of tissue-engineered constructs fabricated by a direct-write bioassembly tool. Tissue Eng. 2007;13(1076–3279 (Print)):373–83.

    Article  CAS  PubMed  Google Scholar 

  73. Smith CM, Stone AL, Parkhill RL, Stewart Rl, Simpkins MW, Kachurin AM, Warren WL, et al. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng. 2004;10(1076–3279 (Print)):1566–76.

    Article  CAS  PubMed  Google Scholar 

  74. Duan B, Hockaday LA, Kang KH, Butcher JT. 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 2012;101 A(5):1255–64.

    PubMed Central  PubMed  Google Scholar 

  75. Hockaday LA, Kang KH, Colangelo NW, Cheung PYC, Duan B, Malone E, et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication. 2012;4(3):035005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Chang R, Nam J, Sun W. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng. 2008;14(1937–3341 (Print)):41–8.

    Article  CAS  Google Scholar 

  77. Cohen DL, Malone E, Lipson H, Bonassar LJ. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng. 2006;12(1076–3279 (Print)):1325–35.

    Article  CAS  PubMed  Google Scholar 

  78. Christopher MO, Francoise M, Gabor F, Cheryl MH. Biofabrication and testing of a fully cellular nerve graft. Biofabrication. 2013;5(4):045007.

    Article  CAS  Google Scholar 

  79. Mironov V, Kasyanov V, Markwald RR. Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol. 2011;22(5):667–73.

    Article  CAS  PubMed  Google Scholar 

  80. Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30(30):5910–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Kucukgul C, Ozler SB, Inci I, Karakas E, Irmak S, Gozuacik D, et al. 3D bioprinting of biomimetic aortic vascular constructs with self-supporting cells. Biotechnol Bioeng. 2014:112(4):811–21 n/a-n/a.

    Article  CAS  Google Scholar 

  82. Ozler SB, Kucukgul C, Koc B. 3D continuous cell bioprinting. submitted 2015.

    Google Scholar 

  83. Kucukgul C, Ozler B, Karakas HE, Gozuacik D, Koc B. 3D hybrid bioprinting of macrovascular structures. Procedia Eng. 2013;59(0):183–92.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahattin Koc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ozler, S., Kucukgul, C., Koc, B. (2015). Bioprinting with Live Cells. In: Turksen, K. (eds) Bioprinting in Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-21386-6_3

Download citation

Publish with us

Policies and ethics