Skip to main content

Abstract

Pediatric brain tumors are the most common solid tumor in children (2500–3000 new diagnoses/year), accounting for approximately 20 % of all pediatric cancers. They represent the primary cause of death in this patient population with a 5-year survival of 60–70 %. The distribution of the central nervous system tumors is classified according to the anatomic compartment involved (see Table14.1). Overall, supratentorial and infratentorial tumors occur in equal frequency; supratentorial is more common in children with age inferior to 2 years; infratentorial tumors are more common between 4 and 10 years old. Brian tumors are classified histopathologically by cell type involved and graded for degree of malignancy by mitotic activity, infiltration, and anaplasia. Management of these patients can be challenging, as treatment is highly dependent on tumor histology, location, and patient age. Selection of an appropriate therapy can only occur if the correct diagnosis is made and the stage of the disease is accurately determined. The location of many tumors proximity to critical brain structures may preclude resection or make difficult to perform diagnostic biopsy, which may be inaccurate in providing a correct diagnosis. Recurrence is not uncommon in childhood brain tumors; thus, long-term management requires the coordinated efforts of a multidisciplinary team to correctly identify and treat relapsed disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruzzone MG, D’Incerti L, Farina LL, Cuccarini V, Finocchiaro G (2012) CT and MRI of brain tumors. Q J Nucl Med Mol Imaging 56(2):112–137

    CAS  PubMed  Google Scholar 

  2. Panigrahy A, Blüml S (2009) Neuroimaging of pediatric brain tumors: from basic to advanced magnetic resonance imaging (MRI). J Child Neurol 24(11):1343–1365

    Article  PubMed  Google Scholar 

  3. Charles-Edwards EM, deSouza NM (2006) Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 6:135–143

    Article  PubMed Central  PubMed  Google Scholar 

  4. Lee SK (2012) Diffusion tensor and perfusion imaging of brain tumors in high-field MR imaging. Neuroimaging Clin N Am 22(2):123–134

    Article  PubMed  Google Scholar 

  5. Horská A, Barker PB (2010) Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am 20(3):293–310

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bertholdo D, Watcharakorn A, Castillo M (2013) Brain proton magnetic resonance spectroscopy: introduction and overview. Neuroimaging Clin N Am 23(3):359–380

    Article  PubMed  Google Scholar 

  7. Maria BL, Drane WE, Mastin ST, Jimenez LA (1998) Comparative value of thallium and glucose SPECT imaging in childhood brain tumors. Pediatr Neurol 19(5):351–357

    Article  CAS  PubMed  Google Scholar 

  8. Maffioli L, Gasparini M, Chiti A, Gramaglia A, Mongioj V, Pozzi A, Bombardieri E (1996) Clinical role of technetium-99m sestamibi single-photon emission tomography in evaluating pretreated patients with brain tumours. Eur J Nucl Med 23(3):308–311

    Article  CAS  PubMed  Google Scholar 

  9. Choi JY, Kim SE, Shin HJ, Kim BT, Kim JH (2000) Brain tumor imaging with 99mTc-tetrofosmin: comparison with 201Tl, 99mTc-MIBI, and 18F-fluorodeoxyglucose. J Neurooncol 46(1):63–70

    Article  CAS  PubMed  Google Scholar 

  10. Spence AM, Muzi M, Mankoff DA, O’Sullivan SF, Link JM, Lewellen TK, Lewellen B, Pham P, Minoshima S, Swanson K, Krohn KA (2004) 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med 45(10):1653–1659

    PubMed  Google Scholar 

  11. Wong TZ, van der Westhuizen GJ, Coleman RE (2002) Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am 12:615–626

    Article  PubMed  Google Scholar 

  12. De Witte O, Levivier M, Violon P et al (1996) Prognostic value of positron emission tomography with [18F]fluoro-2-D-glucose in the low-grade glioma. J Neurosurg 39:470–477

    Google Scholar 

  13. Nihashi T, Dahabreh IJ, Terasawa T (2013) PET in the clinical management of glioma: evidence map. AJR Am J Roentgenol 200(6):W654–W660

    Article  PubMed  Google Scholar 

  14. Padoma MV, Said S, Jacobs M et al (2003) Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol 64:227–237

    Article  Google Scholar 

  15. Chao ST, Suh JH, Raja S et al (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96:191–197

    Article  CAS  PubMed  Google Scholar 

  16. Ricci PE, Karis JP, Heiserman JE et al (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 19:407–413

    CAS  PubMed  Google Scholar 

  17. Hubner KF, Purvis JT, Mahaley SM Jr et al (1982) Brain tumor imaging by positron emission computed tomography using 11C-labeled amino acids. J Comput Assist Tomogr 6:544–550

    Article  CAS  PubMed  Google Scholar 

  18. Roelcke U, Radu EW, von Ammon K, Hausmann O, Maguire RP, Leenders KL (1995) Alteration of blood–brain barrier in human brain tumors: comparison of [18F]fluorodeoxyglucose, [11C]methionine and rubidium-82 using PET. J Neurol Sci 132:20–27

    Article  CAS  PubMed  Google Scholar 

  19. Nagata T, Tsuyuguchi N, Uda T, Terakawa Y, Takami T, Ohata K (2011) Examination of 11C-methionine metabolism by the standardized uptake value in the normal brain of children. J Nucl Med 52(2):201–205

    Article  PubMed  Google Scholar 

  20. Herholz K, Holzer T, Bauer B et al (1998) 11C-Methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322

    Article  CAS  PubMed  Google Scholar 

  21. Kracht LW, Miletic H, Busch S, Jacobs AH, Voges J, Hoevels M, Klein JC, Herholz K, Heiss WD (2004) Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 10(21):7163–7170

    Article  CAS  PubMed  Google Scholar 

  22. Tsuyuguchi N, Takami T, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Nishikawa M, Ohata K, Torii K, Morino M, Nishio A, Hara M (2004) Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery–in malignant glioma. Ann Nucl Med 18(4):291–296

    Article  CAS  PubMed  Google Scholar 

  23. Terakawa Y, Tsuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S, Takami T, Ohata K (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49(5):694–699

    Article  PubMed  Google Scholar 

  24. Tsuyuguchi N, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Takami T, Otsuka Y, Sakamoto S, Ohata K, Goto T, Hara M (2003) Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg 98(5):1056–1064

    Article  PubMed  Google Scholar 

  25. Laverman P, Boerman OC, Corstens FH, Oyen WJ (2002) Fluorinated amino acids for tumour imaging with positron emission tomography. Eur J Nucl Med Mol Imaging 29:681–690

    Article  CAS  PubMed  Google Scholar 

  26. Weber WA, Wester HJ, Grosu AL, Herz M, Dzewas B, Feldmann HJ, Molls M, Stöcklin G, Schwaiger M (2000) O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 27(5):542–549

    Article  CAS  PubMed  Google Scholar 

  27. Calabria F, Chiaravalloti A, Di Pietro B, Grasso C, Schillaci O (2012) Molecular imaging of brain tumors with 18F-DOPA PET and PET/CT. Nucl Med Commun 33(6):563–570

    Article  PubMed  Google Scholar 

  28. Yamamoto Y, Ono Y, Aga F, Kawai N, Kudomi N, Nishiyama Y (2012) Correlation of 18F-FLT uptake with tumor grade and Ki-67 immunohistochemistry in patients with newly diagnosed and recurrent gliomas. J Nucl Med 53(12):1911–1915

    Article  CAS  PubMed  Google Scholar 

  29. Barwick T, Bencherif B, Mountz JM, Avril N (2009) Molecular PET and PET/CT imaging of tumour cell proliferation using F-18 fluoro-L-thymidine: a comprehensive evaluation. Nucl Med Commun 30(12):908–917

    Article  CAS  PubMed  Google Scholar 

  30. Miyake K, Shinomiya A, Okada M, Hatakeyama T, Kawai N, Tamiya T (2012) Usefulness of FDG MET and FLT-PET studies for the management of human gliomas. J Biomed Biotechnol 2012:205818

    Article  PubMed Central  PubMed  Google Scholar 

  31. Yüksel M, Lutterbey G, Biersack HJ, Elke U, Hasan C, Gao Z, Bode U, Ezziddin S (2007) 111In-pentetreotide scintigraphy in medulloblastoma: a comparison with magnetic resonance imaging. Acta Oncol 46(1):111–117

    Article  PubMed  Google Scholar 

  32. Henze M, Schuhmacher J, Hipp P, Kowalski J, Becker DW, Doll J, Mäcke HR, Hofmann M, Debus J, Haberkorn U (2001) PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med 42(7):1053–1056, PubMed

    CAS  PubMed  Google Scholar 

  33. Henze M, Dimitrakopoulou-Strauss A, Milker-Zabel S, Schuhmacher J, Strauss LG, Doll J, Mäcke HR, Eisenhut M, Debus J, Haberkorn U (2005) Characterization of 68Ga-DOTA-D-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med 46(5):763–769

    CAS  PubMed  Google Scholar 

  34. Kwee SA, DeGrado TR, Talbot JN, Gutman F, Coel MN (2007) Cancer imaging with fluorine-18-labeled choline derivatives. Semin Nucl Med 37(6):420–428

    Article  PubMed  Google Scholar 

  35. Hara T, Kondo T, Hara T, Kosaka N (2003) Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg 99(3):474–479

    Article  PubMed  Google Scholar 

  36. Lam WW, Ng DC, Wong WY, Ong SC, Yu SW, See SJ (2011) Promising role of [18F] fluorocholine PET/CT vs [18F] fluorodeoxyglucose PET/CT in primary brain tumors-early experience. Clin Neurol Neurosurg 113(2):156–161

    Article  PubMed  Google Scholar 

  37. Mayer A, Schneider F, Vaupel P, Sommer C, Schmidberger H (2012) Differential expression of HIF-1 in glioblastoma multiforme and anaplastic astrocytoma. Int J Oncol 41(4):1260–1270

    PubMed Central  PubMed  Google Scholar 

  38. Kobayashi H, Hirata K, Yamaguchi S, Terasaka S, Shiga T, Houkin K (2013) Usefulness of FMISO-PET for glioma analysis. Neurol Med Chir 53(11):773–778

    Article  Google Scholar 

  39. Yamamoto Y, Maeda Y, Kawai N, Kudomi N, Aga F, Ono Y, Nishiyama Y (2012) Hypoxia assessed by 18F-fluoromisonidazole positron emission tomography in newly diagnosed gliomas. Nucl Med Commun 33(6):621–625

    Article  CAS  PubMed  Google Scholar 

  40. Nensa F, Beiderwellen K, Heusch P, Wetter A (2014) Clinical applications of PET/MR: current status and future perspectives. Diagn Interv Radiol. doi:10.5152/dir.14008

    PubMed Central  PubMed  Google Scholar 

  41. Boss A, Bisdas S, Kolb A, Hofmann M, Ernemann U, Claussen CD, Pfannenberg C, Pichler BJ, Reimold M, Stegger L (2010) Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med 51(8):1198–1205

    Article  PubMed  Google Scholar 

  42. Bisdas S, Ritz R, Bender B, Braun C, Pfannenberg C, Reimold M, Naegele T, Ernemann U (2013) Metabolic mapping of gliomas using hybrid MR-PET imaging: feasibility of the method and spatial distribution of metabolic changes. Invest Radiol 48(5):295–301

    Article  CAS  PubMed  Google Scholar 

  43. Franzius C, Vormoor J, Weckesser M, Jürgens KU, Schober O (2006) Optimised PET/CT protocols with diagnostic contrast enhanced multi-slice CT and low-dose CT in paediatric patients: analysis of more than 350 examinations. Eur J Nucl Med Mol Imaging 33(Suppl 2):124

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Lorenzoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lorenzoni, A., Alessi, A., Crippa, F. (2016). Cerebral Tumors. In: Mansi, L., Lopci, E., Cuccurullo, V., Chiti, A. (eds) Clinical Nuclear Medicine in Pediatrics. Springer, Cham. https://doi.org/10.1007/978-3-319-21371-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21371-2_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21370-5

  • Online ISBN: 978-3-319-21371-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics