Skip to main content

Quantum Spacetime and Algebraic Quantum Field Theory

  • Chapter
  • First Online:
Advances in Algebraic Quantum Field Theory

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

We review the investigations on the quantum structure of spacetime, to be found at the Planck scale if one takes into account the operational limitations to the localization of events which result from the concurrence of Quantum Mechanics and General Relativity. We also discuss the different approaches to (perturbative) Quantum Field Theory on Quantum Spacetime, and some of the possible cosmological consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Of course \(\mathcal K^{\otimes n}\simeq \mathcal K\), so that \(\mathscr {E}^{(n)}\simeq \mathscr {E}\).

  2. 2.

    Such a limitation could not be obtained in any case if coordinates have to be represented by selfadjoint operators, unless the availability of (generalized) eigenstates is restricted.

  3. 3.

    This set is nonempty, as the Gauss function is the Wigner function of the best localized states.

  4. 4.

    Note however, that in a Euclidean realm at least, there is hope that an infrared-cutoff model, the so-called Grosse-Wulkenhaar model might have a chance to be resummable and thus give way even to a constructible theory.

References

  1. Amati, D., Ciafaloni, M., Veneziano, G.: Higher-order gravitational deflection and soft bremsstrahlung in Planckian energy superstring collisions. Nucl. Phys. B 347, 550 (1990)

    Article  ADS  Google Scholar 

  2. Bahns D.: On the ultraviolet-infrared mixing problem on the noncommutative Minkowski space. Ann. Henri Poincar/’e. To appear

    Google Scholar 

  3. Bahns D.: Ultraviolet finiteness of the averaged Hamiltonian on the noncommutative Minkowski space. arXiv:hep-th/0405224

  4. Bahns, D., Doplicher, S., Fredenhagen, K., Piacitelli, G.: On the Unitarity problem in space-time noncommutative theories. Phys. Lett. B 533, 178–181 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bahns, D., Doplicher, S., Fredenhagen, K., Piacitelli, G.: Ultraviolet finite quantum field theory on quantum space-time. Commun. Math. Phys. 237, 221–241 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bahns, D., Doplicher, S., Fredenhagen, K., Piacitelli, G.: Field theory on noncommutative spacetimes: quasiplanar wick products. Phys. Rev. D 71, 1–12 (2005)

    Article  MathSciNet  Google Scholar 

  7. Bahns, D., Doplicher, S., Fredenhagen, K., Piacitelli, G.: Quantum geometry on quantum spacetime: distance, area and volume operators. Commun. Math. Phys. 308, 567–589 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Bronstein M.P.: Quantum theory of weak gravitational fields. (Republication from Physikalische Zeitschrift der Sowjetunion, Band 9, Heft 23, pp. 140–157 (1936), English translation by M.A. Kurkov, edited by S. Deser) Gen. Relativ. Gravit. 44, 267–283 (2012)

    Google Scholar 

  9. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a new paradigm for local quantum physics. Commun. Math. Phys. 237, 31–68 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Buchholz, D., Ojima, I., Roos, H.: Thermodynamic properties of non-equilibrium states in quantum field theory. Ann. Phys. 297, 219–242 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Buchholz, D., Lechner, G., Summers, S.: Warped convolutions, rieffel deformations and the construction of quantum field theories. Commun. Math. Phys. 304, 95–123 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Camelia G.A.: Testable scenario for relativity with minimum length. Phys. Lett. B 510, 255–263 (2001)

    Google Scholar 

  13. Dappiaggi, C., Pinamonti, N., Porrmann, M.: Local causal structures, Hadamard states and the principle of local covariance in quantum field theory. Commun. Math. Phys. 304, 459–498 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Doescher, C., Zahn, J.: Infrared cutoffs and the adiabatic limit in noncommutative spacetime. Phys. Rev. D 73, 045024 (2006)

    Article  ADS  Google Scholar 

  15. Doplicher, S., Fredenhagen, K.: Unpublished

    Google Scholar 

  16. Doplicher S.: Space-time and fields: a quantum texture. In: Karpacz, New developments in fundamental interaction theories, pp. 204–213. arXiv:hep-th/0105251 (2001)

  17. Doplicher, S., Fredenhagen, K., Roberts, J.E.: Spacetime quantization induced by classical gravity. Phys. Lett. B 331, 39–44 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  18. Doplicher, S., Fredenhagen, K., Roberts, J.E.: The quantum structure of spacetime at the planck scale and quantum fields. Commun. Math. Phys. 172, 187–220 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Doplicher, S.: The principle of locality: effectiveness, fate, and challenges. J. Math. Phys. 51, 015218 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Doplicher, S., Morsella, G., Pinamonti, N.: On quantum spacetime and the horizon problem. J. Geom. Phys. 74, 196–210 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Grosse, H., Lechner, G.: Wedge-local quantum fields and noncommutative minkowski space. JHEP 0711, 012 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Ijjas, A., Steinhardt, P.J., Loeb, A.: Inflationary paradigm in trouble after Planck 2013. Phys. Lett. B 723, 261–266 (2013). arXiv:1304.2785

  23. Peebles P.J.E.: Principles of Physical Cosmology, Princeton University Press, Princeton (1993)

    Google Scholar 

  24. Perini, C., Tornetta G.N.: A scale covariant quantum spacetime. Rev. Math. Phys. To appear. arXiv:1211.7050

  25. Piacitelli, G.: Nonlocal theories: new rules for old diagrams. JHEP 0408, 031 (2004). arXiv:hep-th/0403055

  26. Piacitelli, G.: Twisted covariance as a non invariant restriction of the fully covariant dfr model. arXiv:0902.0575[hep-th]

  27. Pinamonti, N., Siemssen, D.: Global existence of solutions of the semiclassical Einstein equation for cosmological spacetimes. Commun. Math. Phys. 334, 171–191 (2015). arXiv:1309.6303

  28. Pinamonti, N.: On the initial conditions and solutions of the semiclassical Einstein equations in a cosmological scenario. Commun. Math. Phys. 305, 563–604 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Planck Collaboration. Planck 2013 results. I. Overview of products and scientific results. A&A. To appear. arXiv:1303.5602

  30. Tomassini, L., Viaggiu, S.: Physically motivated uncertainty relations at the Planck length for an emergent non commutative spacetime. Class. Quantum Grav. 28, 075001 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Tomassini, L., Viaggiu, S.: Building non commutative spacetimes at the Planck length for Friedmann flat cosmologies. Class. Quantum Grav. 31, 185001 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Wald, R.M.: General Relativity, Chicago University Press, Chicago (1984)

    Google Scholar 

  33. Zahn, J.: Noncommutative (supersymmetric) electrodynamics in the Yang-Feldman formalism. Phys. Rev. D 82, 105033 (2010). arxiv:1008.2309

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Morsella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bahns, D., Doplicher, S., Morsella, G., Piacitelli, G. (2015). Quantum Spacetime and Algebraic Quantum Field Theory. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds) Advances in Algebraic Quantum Field Theory. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-21353-8_7

Download citation

Publish with us

Policies and ethics